Navigation

Prof. Dr.-Ing. habil. Paul Steinmann

Bild von Paul Steinmann

 

 

  • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
    (FAU Funds)
    Laufzeit: 1. April 2019 - 31. März 2021
    URL: https://www.biohydrogels.forschung.fau.de/
    Biological tissues such as blood vessels, skin, cartilage or nervous tissue provide vital functionality
    to living organisms. Novel computational simulations of these tissues can provide insights
    into their biomechanics during injury and disease that go far beyond traditional approaches. This
    is of ever increasing importance in industrial and medical applications as numerical models will
    enable early diagnostics of diseases, detailed planning and optimization of surgical procedures,
    and not least will reduce the necessity of animal and human experimentation. However, the extreme
    compliance of these, from a mechanical perspective, particular soft tissues stretches conventional
    modeling and testing approaches to their limits. Furthermore, the diverse microstructure
    has, to date, hindered their systematic mechanical characterization. In this project, we will, as a
    novel perspective, categorize biological tissues according to their mechanical behavior and identify
    biofabricated proxy (substitute) materials with similar properties to reduce challenges related
    to experimental characterization of living tissues. We will further develop appropriate mathematical
    models that allow us to computationally predict the tissue response based on these proxy
    materials. Collectively, we will provide a catalogue of biopolymeric proxy materials for different
    soft tissues with corresponding modeling approaches. As a prospect, this will significantly facilitate
    the choice of appropriate materials for 3D biofabrication of artificial organs, as well as modeling
    approaches for predictive simulations. These form the cornerstone of advanced medical
    treatment strategies and engineering design processes, leveraging virtual prototyping.
  • Teilprojekt P10 - Configurational Fracture/Surface Mechanics
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
    Laufzeit: 2. Januar 2019 - 30. Juni 2023
    Mittelgeber: DFG / Graduiertenkolleg (GRK)
    URL: https://www.frascal.research.fau.eu/home/research/p-10-configurational-fracture-surface-mechanics/
    In a continuum the tendency of pre-existing cracks to propagate through
    the ambient material is assessed based on the established concept of
    configurational forces. In practise crack propagation is
    however prominently affected by the presence and properties of either
    surfaces and/or interfaces in the material. Here materials exposed to
    various surface treatments are mentioned, whereby effects of surface
    tension and crack extension can compete. Likewise, surface tension in
    inclusion-matrix interfaces can often not be neglected. In a continuum
    setting the energetics of surfaces/interfaces is captured by separate
    thermodynamic potentials. Surface potentials in general result in
    noticeable additions to configurational mechanics. This is
    particularly true in the realm of fracture mechanics, however its
    comprehensive theoretical/computational analysis is still lacking.The project aims in a systematic account of the pertinent
    surface/interface thermodynamics within the framework of geometrically
    nonlinear configurational fracture mechanics. The focus is especially on
    a finite element treatment, i.e. the Material Force Method [6]. The
    computational consideration of thermodynamic potentials, such as the
    free energy, that are distributed within surfaces/interfaces is at the
    same time scientifically challenging and technologically relevant when
    cracks and their kinetics are studied.
  • Teilprojekt P5 - Compressive Failure in Porous Materials
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
    Laufzeit: 2. Januar 2019 - 30. Juni 2023
    Mittelgeber: DFG / Graduiertenkolleg (GRK)
    URL: https://www.frascal.research.fau.eu/home/research/p-5-compressive-failure-in-porous-materials/
    Materials such as solid foams, highly-porous cohesive granulates, for
    aerogels possess a mode of failure not available to other solids. cracks
    may form and propagate even under compressive loads (‘anticracks’,
    ‘compaction bands’). This can lead to counter-intuitive
    modes of failure – for instance, brittle solid foams under compressive
    loading may deform in a quasi-plastic manner by gradual accumulation of
    damage (uncorrelated cell wall failure), but fail catastrophically under
    the same loading conditions once stress concentrations trigger
    anticrack propagation which destroys cohesion along a continuous
    fracture plane. Even more complex failure patterns may be observed in
    cohesive granulates if cohesion is restored over time by
    thermodynamically driven processes (sintering, adhesive aging of newly
    formed contacts), leading to repeated formation and propagation of zones
    of localized damage and complex spatio-temporal patterns as observed in
    sandstone, cereal packs, or snow.We study failure processes associated with volumetric compaction in
    porous materials and develop micromechanical models of deformation and
    failure in the discrete, porous microstructures. We then make a scale
    transition to a continuum model which we parameterise using the discrete
    simulation results.
  • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Januar 2019 - 30. Juni 2023
    Mittelgeber: Deutsche Forschungsgemeinschaft (DFG)
    URL: https://www.frascal.research.fau.eu/
  • Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
    (Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)
    Laufzeit: 1. Januar 2019 - 30. Juni 2023
    Mittelgeber: DFG / Graduiertenkolleg (GRK)
    URL: https://www.frascal.research.fau.eu/
    Das Graduiertenkolleg (GK) zielt auf das vertiefte Verständnis des Bruchverhaltens spröder, heterogener Materialien, indem es Simulationsmethoden entwickelt, die den vielskaligen Charakter von Bruchvorgängen erfassen können. Durch i) Verankerung in verschiedenen wissenschaftlichen Disziplinen, ii) Fokussierung auf den Einfluss von Heterogenitäten auf das Bruchverhalten auf verschiedenen Zeit- und Längenskalen sowie iii) Integration hochgradig spezialisierter Ansätze in ein „holistisches“ Konzept widmet sich das GK einem anspruchsvollen Querschnittsthema der Werkstoffmechanik. Obwohl Ansätze für Simulationen zur Beschreibung des Bruchverhaltens für bestimmte Materialtypen sowie spezifische Zeit- und Längenskalen existieren, fehlt bislang ein ganzheitlicher, übergreifender Ansatz, mit dem Bruchvorgänge in diversen, besonders in heterogenen Materialien und in verschiedener zeit- und räumlicher Auflösung erfassbar sind. Daher beantragen wir ein interdisziplinäres GK aus Mechanik, Werkstoffwissenschaften, Mathematik, Chemie und Physik, das die erforderliche Methodik zur Untersuchung der Mechanismen des Sprödbruchs und deren Beeinflussung durch mehrskalige Heterogenitäten in verschiedenen Materialien entwickeln wird. Die so erzielten Erkenntnisse und der methodische Rahmen werden es erlauben, in Bezug auf das Bruchverhalten maßgeschneiderte und optimierte Materialien zu entwickeln. Das GK wird ein repräsentatives Spektrum spröder Materialien und deren Komposite sowie granulare und poröse Materialien umfassen. Im GK werden diese auf für Natur- und Ingenieurwissenschaften relevanten Zeit- und Längenskalen in subatomaren, atomaren, mesoskaligen und makroskopischen Beschreibungen untersucht. Die Modellierungen und Simulationen beruhen auf Ansätzen der Quantenmechanik, der Molekularmechanik und der Kontinuumsmechanik. Diese werden in einen umfassenden Rahmen eingebettet, der perspektivisch zu einem virtuellen Labor führt, das letztlich aufwändige und teure Material- und Bauteilversuche ergänzen und minimieren soll. Im GK werden Nachwuchsforscherinnen und -forscher unter Betreuung erfahrener PAs zu anspruchsvollen skalenübergreifenden Fragen von Bruchvorgängen forschen. Das GK wird in der Forschung und Lehre Synergien fördern und soll ein Schlüsselelement in den interdisziplinären Forschungsschwerpunkten „Neue Materialien und Prozesse“ sowie „Modellierung–Simulation–Optimierung“ der FAU werden.
  • Fracture Across Scales and Materials, Processes and Disciplines
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Fracture Across Scales and Materials, Processes and Disciplines (FRAMED)
    Laufzeit: 1. September 2017 - 31. August 2021
    Mittelgeber: EU - 8. Rahmenprogramm - Horizon 2020
  • Skalenübergreifende Modellierung - von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Januar 2016 - 30. September 2018
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Dieser Antrag befasst sich mit einem gekoppelten Quantenmechanik (QM) - Kontinuumsmechanik (KM) - Ansatz zur Analyse elektro-elastischer Probleme. Trotz der Anstrengungen, die bereits unternommen wurden um die verschiedenen Modelle zur Beschreibung des Verhaltens von Materie zusammenzuführen, gibt es noch offene Fragen, die weiterer Klärung bedürfen. Zunächst gilt es einen effizienten, auf Finiten Elementen (FE) basierenden Lösungsansatz für die Kohn-Sham (KS) Gleichungen im Rahmen der Dichte-Funktional Theorie (DFT) weiter zu entwickeln. Die Hauptaugenmerke liegen hierbei auf der Wahl eines Fehlerschätzers als Grundlage einer h-adaptiven Netzverfeinerung fuer nicht-lokale pseudo-potentiale, der Netzanpassung während der Strukturoptimierung und der Formulierung der Deformationsabbildung. Derzeit existiert keine open-source Implementierung eines DFT-Ansatzes auf Basis einer FE-Modellierung die über eine hp-adaptive Netzanpassung verfügt. Eine Kontrolle der Randbedingungen und die Möglichkeit einer adaptiven Netzverfeinerung ist jedoch unabkömmlich, um eine erfolgreiche Kopplung zwischen KM und QM zu ermöglichen. Eine DFT-Formulierung, die auf der Verwendung von FE basiert zeichnet sich insbesondere durch eine Vollständigkeit der Basis, die Möglichkeit der Netzverfeinerung sowie guter Polarizationseigenschaften als unmittelbare Folge der Gebietsunterteilung aus. Weiterhin werden die Feldgrößen der QM in direkten Bezug zu den entsprechenden Feldgrößen der KM gesetzt (z.B. Verschiebungen, Deformationsgradient, Piola-Spannungen, Polarisation etc.). Dies wird durch eine Mittelung in der Referenzkonfiguration erreicht. Hierzu muss eine vollständige Lösung der KS Gleichungen für die gewählte FE Basis vorliegen. Dieses Vorgehen soll an einem repräsentativen numerischen Beispiel - der Biegung eines Kohlenstoffnanoröhrchens - validiert werden. Im Bereich der KM soll eine um Oberflächeneffekte erweiterte Modellierung verwendet werden, um den Einfluss der Oberfläche auf das Verhalten des Kontinuums abzubilden. Obwohl diese Effekte bereits Gegenstand intensiver theoretischer Untersuchungen sind, wurde bisher noch kein Versuch unternommen diese Ansätze auch an numerischen Beispielen zu validieren. Abschließend soll ein gekoppelter QM-KM Ansatz vorgeschlagen werden. Die Kopplung selbst soll hierbei gestaffelt erfolgen, d.h. die QM und KM Probleme werden iterativ gelöst und tauschen Informationen untereinander aus. Als Test-Problem soll hierbei die Rissausbreitung in einer Graphene-Schicht dienen. Als Fernziel des Projektes soll eine Anwendung des gekoppelten Ansatzes auf Probleme im Gebiet der Elektro-Elastizität erfolgen. Nach meinem Kenntnisstand ist keine der verfügbaren QM-KM Kopplungen in der Lage, Probleme im Gebiet der Elektro-Elastizität zu lösen.
  • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: SPP 1886: Polymorphe Unschärfemodellierungen für den numerischen Entwurf von Strukturen
    Laufzeit: 1. Januar 2016 - 31. März 2020
    Mittelgeber: DFG / Schwerpunktprogramm (SPP)
    Das übergeordnete Ziel dieses Vorhabens auf der Methodenseite ist es, eine vom Rechenaufwand handhabbare numerische Methode zu etablieren, die es erlaubt, polymorphe Unsicherheiten in großdimensionierten Problemen (die z.B. im Rahmen der numerischen Analyse der Mikrostruktur heterogener Materialien entstehen) zu erfassen. Dazu wird die Methode auf der einen Seite unscharfe Wahrscheinlichkeitsverteilungen der Zufallsparameter (die die Geometrie der Mikrostruktur beschreiben) berücksichtigen und auf der anderen Seite wird die Methode nur auf wenigen reduzierten Basismoden beruhen. Diese Bausteine werden es ermöglichen, zusätzlich zu epistemischen auch aleatorische Unsicherheiten in einer numerisch zugänglichen Art und Weise zu behandeln.Das übergeordnete Ziel dieses Vorhabens auf der Anwendungsseite ist es, ein nicht-deterministisches, makroskopisches Materialmodel zu etablieren. Das Model wird einerseits der Heterogenität der dem Material zugrundeliegenden Mikrostruktur durch numerische Homogenisierung Rechnung tragen und andererseits polymorphe Unsicherheiten in der Geometriebeschreibung der Mikrostruktur erfassen. Das so formulierte nicht-deterministische, makroskopische Materialmodel stellt somit den notwendigen Startpunkt für den Entwurf makroskopischer Ingenieurstrukturen unter Berücksichtigung polymorpher Unsicherheiten in der Beschreibung der, heterogenen Materialien zugrundeliegenden, Mikrostruktur dar.
  • Meso- und makroskopische Modellierung, Simulation und numerische Homogenisierung des Materialverhaltens metallischer Werkstoffe in der additiven Fertigung
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Additive Fertigung
    Laufzeit: 1. Juli 2015 - 30. Juni 2019
    Mittelgeber: DFG - Sonderforschungsbereiche
    URL: http://www.sfb814.forschung.uni-erlangen.de/projekte/c-bauteile/teilprojekt-c5.shtml
    Thermo-mechanische FE-Simulation der Abkühlung einer typischen Mesostruktur aus im SEBM-Verfahren gefertigten TiAl6V4 von 1700 C° bis 900 C°. Ausgehend von einem spannungsfreien Zustand sind von links oben nach rechts unten die v.Mises Vergleichspannungen im Temperaturintervall von 1600 C° bis 900 C° exemplarisch dargestellt.

    Werden metallische Pulver als Ausgangsmaterial in strahlbasierten Fertigungsverfahren eingesetzt, so ist die resultierende Mesostruktur des erstarrten Materials, d.h. die Geometrie (Gestalt, Größe) der Kristallkörner und deren Orientierung (Textur), stark von der Richtung und Größe des Temperaturgradienten an der Erstarrungsfront abhängig. Das Ziel dieses Teilprojekts ist die kontinuums-thermo-mechanische Modellierung und Simulation des Materialverhaltens unter Berücksichtigung der prozess-induzierten Mesostruktur. Dazu wird auf der Mesoskala eine gradienten-erweiterte Kristall-Plastizitätsformulierung eingesetzt und die mesoskopischen Größen werden mit Hilfe numerischer Homogenisierung, sowohl für das isotherme Gebrauchsverhalten nach dem Prozess als auch für den Abkühlvorgang während des Prozesses, der in Eigenverzerrungen und zugehörigen Eigenspannungen resultiert, auf die Makroskala transferiert.

  • Ein numerisches Model für den translatorischen und rotatorischen Impulstransfer von kleinen nicht-sphärischen starren Partikeln in fluid-dominierten Zweiphasenströmungen
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Dezember 2014 - 31. Januar 2020
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Das übergeordnete Ziel des beantragten Mercator Vorhabens ist die Erstellung eines numerischen Modells für den translatorischen und rotatorischen Impulstransfer von kleinen nicht-sphärischen starren Partikeln in fluid-dominierten Zweiphasenströmungen. Dazu werden drei Teilziel verfolgt:Das erste Teilziel besteht in der Entwicklung eines numerischen Models für die Partikel-Fluid-Interaktion. Dieses soll einerseits insbesondere die translatorischen und rotatorischen Effekte in der Fluidströmung berücksichtigen und andererseits einen besonderen Fokus auf die resultierende rotatorische Partikelbewegung durch eine hochgenau Bestimmung der Partikelorientierung und -winkelgeschwindigkeit legen. Hierzu sind die Erstellung eines verbesserten Lagrangeschen Partikelverfolgungsalgorithmus zur Verfolgung von nicht-sphärischen Partikeln in einem mit der Geschwindigkeits-Wirbel-Formulierung aufgelösten Strömungsfeld und die Entwicklung einer Zweiwegekopplung im Rahmen eines BEM-Zugangs, der auf einem verbessertem Quellverteilungsmodel in der fluiden Phase basiert, geplant.Das zweite Teilziel besteht in der Berücksichtigung von Kraft- und Momentenmodellen für nicht-spärische Partikel zur Erfassung des Impulsaustausches zwischen Partikeln und Strömung. Hierbei wird ein besondererFokus auf generische ellipsoide Partikelformen gelegt. Im Rahmen der beabsichtigten Starrkörpermodellierung für die Partikel wird begleitend ein Partikelpräprozessor entwickelt, um die Trägheitskennwerte beliebiger Partikel bereitzustellen.Das dritte Teilziel besteht in der Entwicklung schneller paralleler Algorithmen um so hochgenaue und schnelle Berechnungen insbesondere des Wirbelanteils der Strömung mit dem zuvor etablierten BEM-Zugang einerseits und eine effiziente Lösung der die Partikelbewegung beschreibenden differentialalgebraischen Gleichungen andererseits zu ermöglichenDer entwickelte Gesamtalgorithmus wird schließlich durch Vergleich mit unabhängigen numerischen Ergebnissen validiert auf den experimentell verifizierten Testfall einer Schlammflockensedimentierung angewandt.
  • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    (Projekt aus Eigenmitteln)
    Laufzeit: 1. August 2014 - 31. Dezember 2025
    Aussagefähige Bauteilsimulationen erfordern eine quantitativ exakte Kenntnis der Materialeigenschaften. Dabei sind klassische Charakterisierungsmethoden
    teilweise aufwendig, in der Variation und Kontrolle der Umgebungsbedingungen anspruchsvoll oder in der räumlichen Auflösung begrenzt. Das Projekt beschäftigt sich
    deshalb mit der Ertüchtigung hochauflösender Meßmethoden wie Nanoindentation oder Rastkraftmikroskopie und der komplementierenden Entwicklung numerischer
    Verfahren zur Kalibrierung (Parameteridentifikation) inelastischer Stoffgesetze aus den Meßdaten. Inhärent anspruchsvoll sind dabei die geeignete Gestaltung der
    Probekörper und ihrer Fixierung, die den gesuchten Eigenschaften angepaßte Versuchsführung und die hinreichend genaue Reproduktion derselben im Rahmen der zur
    Parameteridentifikation erforderlichen Finite-Elemente-Simulationen.
     
  • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: SPP 1480: Modellierung, Simulation und Kompensation von thermischen Bearbeitungseinflüssen für komplexe Zerspanprozesse
    Laufzeit: 1. Juli 2014 - 1. Juli 2017
    Mittelgeber: DFG / Schwerpunktprogramm (SPP)
    Aluminium-Metall-Matrix-Composltes (Al-MMC) zählen zu einer Gruppe komplexer zweiphasiger Hochleistungswerkstoffe, für die aufgrund Ihrer hervorragenden Funktionseigenschaften zukünftig stark ansteigende Verwendung prognostiziert wird. Bei der Bearbeitung von Werkstücken aus Al-MMC treten prozessbedingt hohe Temperaturen auf. Abhängig von der Höhe der eingebrachten Temperatur können diese zu Werkstückverformungen sowie zu Änderungen im Werkstoffgefüge führen. Um Prozessparameter zu finden, die diese Veränderungen im Werkstück vermeiden, sind heute zeit- und materialintensive experimentelle Untersuchungen notwendig. Aufgrund der hohen Herstellkosten von Al-MMC ist die Reduzierung der Zahl experimenteller Untersuchungen für diese Werkstoffgruppe von besonderer Relevanz. Im Rahmen des hier beantragten Forschungsvorhabens soll daher ein Modell für das thermomechanische Materialverhalten von Al-MMC entwickelt werden, welches eine FE-Simulation des thermischen Einflusses auf das Werkstück bei der Drehbearbeitung ermöglicht. Anhand der Simulationsergebnisse wird eine Kompensation thermischer Einflüsse durch gezielte Prozessführung vorgenommen. In der ersten Antragsphase dieses Vorhabens wird grundlegend die Auswirkung des Temperatureintrags bei der Drehbearbeitung von homogenen Werkstoffen untersucht. Aufbauend auf diesen Untersuchungen erfolgt dann in der zweiten und dritten Antragsphase die Betrachtung mehrphasiger Al-MMC. Dabei wird auch der Einfluss einer variierenden Partikelverteilung auf das thermische Verhalten berücksichtigt werden.
  • Modellierung und Simulation von Wachstum in weichen Biomaterialien
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Februar 2014 - 30. April 2018
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
  • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
    Laufzeit: 1. Januar 2014 - 31. Dezember 2016
    Mittelgeber: EU - 7. RP / Cooperation / Verbundprojekt (CP)
  • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Januar 2014 - 1. Januar 2017
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Das beantragte Forschungsvorhaben beschäftigt sich mit der numerischen Simulation und der Modellierung des Verhaltens von EEAPs (Electronic Electro-Active Polymers) unter dem Einfluss elektrischer Belastungen. Obwohl bereits Arbeiten vorliegen, die das Verhalten von EEAPs prinzipiell beschreiben, bedarf es noch weiterer Anstrengungen um die elektro-thermo-mechanische Wechselwirkung in einem Kontinuumskörper zu modellieren, der einerseits großen Formänderungen unterliegt und andereseits dem Einfluss des den Körper umgebenden Raums ausgesetzt ist. Zum Einen existieren derzeit keine thermodynamisch konsistenten Materialmodelle die gleichermaßen große Formänderungen, die nicht-lineare elektrische Polarisation, die Viskoelastizität und die temperaturabhängigen elektro-mechanischen Eigenschaften von EEAPs berücksichtigen. Zum Anderen gibt es derzeit keine Software, die das gleichzeitige Auftreten dieser multiphysikalischen Effekte in einer einheitlichen Simulationsumgebung erfassen kann. Weiterhin berücksichtigt der Großteil der EEAP-bezogenen Arbeiten in der Literatur nicht den Einfluss des einen Kontinuumskörper umgebenden Raums und kann daher lediglich zur Beschreibung kondensator-ähnlicher Strukturen, deren Dicke im Vergleich zu den übrigen geometrischen Abmessungen sehr klein ist, herangezogen werden. In diesem Forschungsvorhaben soll das Verhalten von EEAPs unter Berücksichtigung des elektro-thermo-visko-elastischen Verhaltens modelliert und mit Hilfe der Methode der finiten Elemente (FEM) und der Randelementmethode (BEM) simuliert werden. Die FEM wird hierbei verwendet, um die EEAP-Struktur zu beschreiben und die BEM soll verwendet werden, um den Einfluss des umgebenden Raums zu simulieren. Neben der numerischen Simulation der elektro-thermo-mechanischen Wechselwirkung in EEAPs soll ebenfalls die numerische Auswertung der materiellen Kräfte in EEAP-Strukturen mit Defekten unter Berücksichtigung elektro-thermo-visko-elastischer Effekte Anwendung finden. Materielle Kräfte können etwa in der Vorhersage der Rissausbreitung in EEAP-basierten Strukturen unter der Wirkung elektrischer Belastungen Verwendung finden.
  • Structural optimization of shape and topology using an embedding domain discretization technique
    (Projekt aus Eigenmitteln)
    Laufzeit: 1. Januar 2013 - 31. Dezember 2018
    This project targets the formulation and implementation of a method for structural shape and topology optimization within an embedding domain setting. Thereby, the main consideration is to embed the evolving structural component into a uniform finite element mesh which is then used for the structural analyses throughout the course of the optimization. A boundary tracking procedure based on adaptive (or hierarchical) mesh refinement is used to identify interior and exterior elements, as well as such elements that are intersected by the physical domain boundary of the structural component. By this mechanism, we avoid the need to provide an updated finite element mesh that conforms to the boundary of the structural component for every single design iteration. Further, when considering domain variations of the structural component, its material points are not attached to finite element nodal points but rather move through the stationary finite element mesh of the embedding domain such that no mesh distortion is observed. Hence, one circumvents the incorporation of time consuming mesh smoothing operations within the domain update procedure. In order to account for the geometric mismatch between the boundary of the structural component and its non-conforming finite element representation within the embedding domain setting, a selective domain integration procedure is employed for all elements that are intersected by the physical domain boundary. This is to distinguish the respective element area fractions interior and exterior to the structural component. We rely on an explicit geometry description for the structural component, and an adjoint formulation is used for the derivation of the design sensitivities in the continuous setting.
  • Zur Formulierung und zum mikromechanischen Ursprung von Diffusionsmodellen
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Juli 2012 - 31. Juli 2019
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Diffusion, especially when coupled with deformation, is of utmost scientific and technological im-portance in various fields of engineering, materials science, natural sciences and their intersections. Prominent examples are the modelling and simulation of solder joints, micro-structure evolution in advanced materials as used e.g. in modern and future turbine blades produced from single crystals, mineral unmixing in geology, contaminant distribution in environmental systems, and drug transport and delivery in biological tissues. In many of these instances classical diffusion models of Fick-type do not accurately describe the observed phenomena, thus requiring non-classical diffusion models. Specific examples for non-classical models of diffusion are the Cahn-Hillard equation and Gurtin's microforce balance.The long-term goals of this project are therefore (i) the formulation and simulation of a generic class of non-classical three-dimensional models of diffusion, (ii) the exploration of their micromechanical origin and (iii) their coupling to deformation. Thereby it is noted that gradient-type and micromorphic-type models as paradigms of extended continuum models are intimately related and offer different benefits and drawbacks2. Thus, as a mid-term goal, gradient-type and micromorphictype formulations of diffusion shall be considered alternatively in Phase I. In order to explore their micromechanical origin, relevant response quantities that participate in the corresponding field equations at the macro-level shall be determined from the micro-level by a second-order computational homogenization.The expected output of this project in Phase I is thus the clarification of the underlying micromechani-cal origin of a generic class of non-classical models of diffusion. Phase II will then concentrate mainly on the coupling of diffusion and deformation. The overall outcome of the project will be of great im-portance in various fields such as engineering, materials science and natural sciences from both the scientific and the technological view point. In particular the design and understanding in the area of novel and advanced materials will be strongly enhanced by the expected findings of this project.
  • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. April 2012 - 31. März 2017
    Mittelgeber: EU - 7. RP / Ideas / ERC Advanced Investigator Grant (AdG)
    MOCOPOLY is a careful revision of an AdG2010-proposal that was evaluated above the quality threshold in steps1&2. In the meantime the applicant has made further considerable progress related to the topics of MOCOPOLY. Magneto-sensitive polymers (elastomers) are novel smart materials composed of a rubber-like matrix filled with magneto-active particles. The non-linear elastic characteristics of the matrix combined with the magnetic properties of the particles allow these compounds to deform dramatically in response to relatively low external magnetic fields. The rapid response, the high level of deformations achievable, and the possibility to control these deformations by adjusting the external magnetic field, make these materials of special interest for the novel design of actuators for a fascinating variety of technological applications. It is the overall objective of this proposal to uncover the process-microstructure-properties relations of the emerging novel multi-scale, multi-physics material class of magneto-sensitive polymers with the aim to better exploit its promising potential for future, currently unimagined technological applications. This objective will only be achieved by performing integrated multi-disciplinary research in fabrication, characterisation, modelling, simulation, testing and parameter identification. This proposal therefore sets up a work programme consisting of nine strongly interconnected work packages that are devoted to:1) Fabrication of magneto-sensitive polymers2) microstructure characterisation by modelling and simulation3) microstructure characterisation by CT-scanning4) continuum physics modelling at the micro-scale5) computational multi-physics homogenisation6) continuum physics modelling at the macro-scale7) testing at the macro-scale8) multi-scale parameter identification9) macro-scale parameter identification.The work programme is therefore characterised by various feedback loops between the work packages.
  • Adaptive finite elements based on sensitivities for topological mesh changes
    (Projekt aus Eigenmitteln)
    Laufzeit: 16. März 2012 - 15. März 2018
    We consider local refinements of finite element triangulations as continuous graph operations, for instance by splitting nodes and inflating edges to elements. This approach allows for the derivation of sensitivities for functionals depending on the finite element solution, which may in turn be used to define local refinement indicators. Thereby, we develop adaptive algorithms exploiting sensitivities for both hierarchical and non-hierarchical mesh changes, and analyze their properties and performance in comparison with established methods.
  • Makroskopische Modellierung, Simulation und Optimierung des selektiven Strahlschmelzens mit pulverförmigen Ausgangswerkstoffen (C03)
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: SFB 814: Additive Fertigung
    Laufzeit: 1. Juli 2011 - 30. Juni 2015
    Mittelgeber: DFG / Sonderforschungsbereich (SFB)
    Das Ziel des Teilprojekts ist die makroskopische Modellierung und Simulation strahlbasierter Ferti-gungsprozesse unter simultaner Berücksichtigung des Materialauftrags, thermischer Effekte und inelastischen Materialverhaltens. Kontinuumsmechanische Methoden und Finite-Elemente Simulationen werden eingesetzt, um prozessinduzierte Eigenspannungen, Schädigungen und Bauteilverzug zuverlässig vorherzusagen.
  • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: SPP 1369: Polymer Solid Contacts: Interfaces and Interphases
    Laufzeit: 1. Februar 2011 - 28. Februar 2014
    Mittelgeber: DFG / Schwerpunktprogramm (SPP)
    This proposal aims at an extension of a recently developed, hybrid MD-FE simulation scheme towards its application to materials dominated by polymer-solid interphases. Only particle-based methods are able to intrinsically resolve microstructure and mechanical behavior of interphases. Therefore, we proceed with the following setup: A coarse-grained MD domain, which contains a single nanoparticle and as much polymer as necessary to ensure bulk behavior at the boundary, is included into a FE do-main. The FE boundary is used to apply various types of deformations and to record the overall stress responses of particle, surrounding interphase and bulk. With these data, the parameters of a purely continuous counterpart to the hybrid setup are iteratively adjusted until it behaves identically. As its main feature, the continuous ersatz-model substitutes the interphase between particle and polymer by an interface governed by a surface energy in the sense of Gibbs. This can be understood as a condensation of micro-scale property profiles within the 3-D interphase into a 2-D continuum mechanical model. Ultimately, after homogenizing the continuous ersatzmodel, macroscopic structure simulations allowing for a due consideration of interphase effects as occurring around nanoparticles are to be realized.
  • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: SPP 1480: Modellierung, Simulation und Kompensation von thermischen Bearbeitungseinflüssen für komplexe Zerspanprozesse
    Laufzeit: 1. August 2010 - 30. August 2012
    Mittelgeber: DFG / Schwerpunktprogramm (SPP)
    Aluminium-Metall-Matrix-Composltes (Al-MMC) zählen zu einer Gruppe komplexer zweiphasiger Hochleistungswerkstoffe, für die aufgrund Ihrer hervorragenden Funktionseigenschaften zukünftig stark ansteigende Verwendung prognostiziert wird. Bei der Bearbeitung von Werkstücken aus Al-MMC treten prozessbedingt hohe Temperaturen auf. Abhängig von der Höhe der eingebrachten Temperatur können diese zu Werkstückverformungen sowie zu Änderungen im Werkstoffgefüge führen. Um Prozessparameter zu finden, die diese Veränderungen im Werkstück vermeiden, sind heute zeit- und materialintensive experimentelle Untersuchungen notwendig. Aufgrund der hohen Herstellkosten von Al-MMC ist die Reduzierung der Zahl experimenteller Untersuchungen für diese Werkstoffgruppe von besonderer Relevanz. Im Rahmen des hier beantragten Forschungsvorhabens soll daher ein Modell für das thermomechanische Materialverhalten von Al-MMC entwickelt werden, welches eine FE-Simulation des thermischen Einflusses auf das Werkstück bei der Drehbearbeitung ermöglicht. Anhand der Simulationsergebnisse wird eine Kompensation thermischer Einflüsse durch gezielte Prozessführung vorgenommen. In der ersten Antragsphase dieses Vorhabens wird grundlegend die Auswirkung des Temperatureintrags bei der Drehbearbeitung von homogenen Werkstoffen untersucht. Aufbauend auf diesen Untersuchungen erfolgt dann in der zweiten und dritten Antragsphase die Betrachtung mehrphasiger Al-MMC. Dabei wird auch der Einfluss einer variierenden Partikelverteilung auf das thermische Verhalten berücksichtigt werden.
  • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. März 2010 - 30. März 2012
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Im Fokus dieses Vorhabens steht die mechanische Mehrskalenmodellierung und -simulation von Materialien mit heterogener Faserstruktur (z.B. schaumartige Filterstrukturen oder Dämmungs-materialien aus der Automobilindustrie) unter besonderer Berücksichtigung des Kontakts zwi-schen den einzelnen Fasern. Das Problem wird dabei durch die Berücksichtigung der verschie-denen geometrischen Längenskalen so komplex, dass eine direkte numerische Simulation nicht mehr möglich ist. Für eine effektive Berechnung ist daher ein Mehrskalenzugang erforderlich. Das Vorhaben soll daher zum einen die Anwendungsgrenzen der asymptotischen Homogenisie-rung auf die mechanische Analyse von Kontaktproblemen in der Mikrostruktur von Fasermate-rialien erweitern und damit ein geeignetes effektives phänomenologisches Konstitutivgesetz herleiten. Aufgrund des Kontaktes zwischen den Fasern ist das resultierende effektive phäno-menologische Konstitutivgesetz nichtlinear. Das effektive phänomenologische Konstitutivgesetz soll dabei insbesondere für verschiedene Kontaktgesetze in der Mikrostruktur hergeleitet und umfassend analysiert werden. Zum anderen soll das Mehrskalenproblem inklusive Kontakt in der Mikrostruktur basierend auf dem Konzept eines Repräsentativen-Volumen-Elementes (RVE) direkt berechnet und die nume-rischen Ergebnisse nach einer Volumenmittelung mit dem vorgeschlagenen effektiven phäno-menologischen Konstitutivgesetz gefittet werden. Als Werkzeug zur Simulation eines RVEs (bzw. einer Periodizitätszelle) dient hierbei die Finite-Element-Methode, die sowohl mit 3D Vo-lumenelementen als auch mit Balkenelementen umgesetzt und auf die Behandlung des Kon-takts zwischen den Fasern erweitert werden soll. Das Gesamtvorhaben soll in einer engen Kooperation zwischen den beteiligten Antragstellern mit den jeweiligen Kernkompetenzen im Bereich der asymptotischen Homogenisierung und der Kontinuumsmechanik bzw. Numerischen Mechanik bearbeitet werden.
  • Modeling and computation of solvent penetration in glassy polymers
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Juli 2009 - 30. Juli 2011
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    The main goal of this proposal is the computational modeling of solvent penetration in glassy polymers. For most engineering applications, Fick s law accurately describes diffusive processes, but one of the applications where it miserably fails is in glassy polymers near the glass transition temperature. In the vicinity of the glass transition temperature, when a low molecular weight solvent diffuses into a glassy polymer, the latter is caused to undergo a rubber-glass phase transition. The diffsive process follows non-Fickian behavior. Whereas the classical Fickian diffusion is referred to as case I diffusion, diffusion in glassy polymers is known as non-Fickian „case II diffusion“. A typical system undergoing case II diffusion is polymethylmethacrylate (PMMA) and methanol, for example.Modeling polymers which undergo case II diffusion is of particular interest in pharmaceutical and automotive industries, for example. Due to the importance of diffusion in many industrial and biological processes, a complete examination from a variety of perspectives and techniques is necessary. One tool at hand is the computational modeling at which this project aims. Hereby, an all-embracing theoretical model is to be set up extending existing approaches. Thus the very challenging modeling of non-Fickian behavior is one main task of this project. The numerical implementation of this ambitious theory is to be done subsequently in order to computationally model distinct typical applications from engineering or biomechanics.
  • C3: Parameter- und Formoptimierung in der finiten Elastoplastizität
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: TRR 73: Umformtechnische Herstellung von komplexen Funktionsbauteilen mit Nebenformelementen aus Feinblechen - Blechmassivumformung
    Laufzeit: 1. Januar 2009 - 31. Dezember 2012
    Mittelgeber: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
    URL: http://www.tr-73.de
  • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
    (Projekt aus Eigenmitteln)
    Laufzeit: 1. August 2008 - 31. Dezember 2025
    Die mechanischen Eigenschaften von Polymerwerkstoffen hängen nicht nur von der chemischen Komposition und den Umgebungsbedingungen (Temperatur, Feuchte,...) ab,
    sondern sie variieren teilweise erheblich mit dem verwendeten Aushärteregime und der Temperaturhistorie. Sie sind darüber hinaus vor allem in Verbundsituationen
    u.U. sogar ortsabhängig von den Eigenschaften der Kontaktpartner beeinflußt, bilden also Eigenschaftgradienten (sog. Interphasen) aus.
    Um diese Effekte bei der Simulation von Bauteilen korrekt abbilden zu können werden im Rahmen des Projektes Modelle entwickelt und erweitert,
    die zeit-, orts- und umgebungsabhängige Materialeigenschaften wie Steifigkeitsevolutionen und -gradienten, Aushärteschrumpf und verschiedene Arten von
    Inelastizität (Viskoelastizität, Elastoplastizität, Viskoplastizität, Schädigung) berücksichtigen können.
  • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
    (Projekt aus Eigenmitteln)
    Laufzeit: 1. Mai 2008 - 1. Mai 2011
    Klassische kontinuierliche Ansätze berücksichtigen die besondere atomare oder molekulare Struktur von Materialien nicht explizit. Somit sind sie für die korrekte Beschreibung hochgradig multiskaliger Phänomene wie beispielsweise Rissausbreitung oder Interphaseneffekte in Polymerwerkstoffen nicht gut geeignet. Um die atomare Auflösungsebene zu integrieren, wurde die „Capriccio“-Methode als eine neuartige Multiskalentechnik entwickelt. Sie wird z.B. für die Untersuchung des Einflusses nanoskaliger Füllstoffpartikel auf die mechanischen Eigenschaften von Polymer-Nanokompositen eingesetzt. Weitere Forschungsaktivitäten konzentrieren sich auf adaptive teilchenbasierte Regionen, die sich im Kontinuum bewegen und somit die Grundlage für die multiskalige Simulation von Rissausbreitung sind.
  • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Februar 2008 - 30. Januar 2013
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    The mechanical response of electronic electro-active polymers (EEAP) under electric loading is influenced both by mechanical and electric properties of the material. Understanding the behavior of EEAP is vital in the development and design of EEAP based actuators and artifical muscles. Despite the fact that applications of EEAP are very promising, until now only a handful of experimental works have been realized to characterize their material properties. Moreover, so far only one-sided coupled models were used to explain experimental data and there exist discrepancies between meausrement, modeling and simulation. In this proposal, first experimental work will be performed to determine the material characteristics of a typical EEAP material then the electro-mechanical coupling phenomenon exhibited by EEAP will be modeled within the frameof hyperelasticity and viscoelasticity. Finally, by using a variational approach, a formulation representing the fully coupled problem will be derived, discretized, linearized and solved by the Finite Element Method in order to simulate the behavior of EEAP. Benchmark simulations will be performed to validate the applicability of the coupled model. Efforts will also be directed to the study of defects of EEAP by the Material Force Method and with the help of some recent developments in the spatial and material setting of nonlinear electro-elasticity. Especially the Material Force Method will be applied in numerical studies of cracked structures made of EEAP.
  • On the Modelling and Computation of Magneto-Sensitive-Elastomers
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. November 2007 - 31. Dezember 2012
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Magneto-sensitive-elastomers are smart materials which are composed of a rubber-like basis matrix filled with magneto-active particles. Due to the highly elastic properties of the rubberlike material, these compounds are able to deform significantly, i.e. geometrically non-linearly by the application of external magnetic fields. The rapid response, the high level of deformations that may be achieved, and the possibility of controlling these deformations by varying an external magnetic field, make these materials of special interest; e.g., for vibration and noise suppression. Thus, there is an urgent need for research on this novel material class in terms of modelling within the framework of geometrically nonlinear continuum physics and in the area of suitable computational methods in order to simulate technologically relevant benchmark problems. In this proposal, three main objectives are pursued: (i) the discussion and formulation of appropriate boundary conditions for the coupled magneto-elastic problem, in particular the correct acknowledgement of the influence of the magnetic field on the mechanical boundary conditions; (ii) the development of simple and at the same time realistic forms for the constitutive equations, respecting the microstructural features and including a careful analysis of the ellipticity (or infinitesimal rank-one convexity) condition; and, finally, an objective of utmost importance is (iii) to solve relevant nonlinear boundary value problems by resorting to a newly developed finite element method.
  • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
    Titel des Gesamtprojektes: SPP 1180: Prediction and manipulation of interaction between Structure and Process
    Laufzeit: 1. Februar 2005 - 30. März 2011
    Mittelgeber: DFG / Schwerpunktprogramm (SPP)
    Aufgrund des mikroskopischen Materialabtrags haben beim Schleifen bereits kleine Schwingungsamplituden und Strukturverlagerungen eine große Bedeutung für das Prozessverhalten und -ergebnis. Vor diesem Hintergrund werden in diesem Forschungsvorhaben Schleifprozess und Schleifmaschine gemeinsam simulativ und experimentell betrachtet, um auftretende Wechselwirkungen und deren Einflüsse auf Prozessverhalten und -ergebnis zu erfassen. In der dritten Projektphase sollen die entwickelten Strategien zur gekoppelten Simulation der Prozess- und Maschinenmodelle detailliert analysiert und optimiert werden. Des Weiteren wird das gekoppelte Simulationssystem an eine weitere Werkzeug-Werkstoff- Paarung angepasst, um dessen Adaptionsfähigkeit zu untersuchen. Dadurch sind weitere messtechnisch überwachte Schleifexperimente zur Verifikation und Kalibrierung notwendig, in denen sowohl Prozessgrößen zur Beschreibung des Maschinenverhaltens als auch Qualitätsmerkmale erfasst werden. Durch Einbeziehung thermischer Effekte sollen das Maschinenmodell verfeinert und die Ergebnisse der gekoppelten Simulation verbessert werden. Die Gesamtheit der durchgeführten experimentellen und numerischen Untersuchungen gewährleistet die Parametrierung und Verifikation der gekoppelten Simulation und ihrer Modelle und ermöglicht die Prognose von Stabilitätskarten zur Korrelation von Qualitätsmerkmalen und Prozessparametern. Diese bieten im Wesentlichen eine Unterstützung bei der Parameterauswahl in der vorbereitenden Prozessauslegung.

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

1992

1991

1990