• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Technische Mechanik
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Mein Campus
  • UnivIS
  • StudOn
  • Lageplan
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Lehrstuhl für Technische Mechanik
Menu Menu schließen
  • Lehrstuhl
    • Team
    • Ehemalige Mitarbeiter
    • Zweigbibliothek
    • Stellenangebote
    Portal Lehrstuhl
  • Forschung
    • Biomechanik
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
    • Kontaktmechanik
      • Materialmodellierung von geschichteten Blechpaketen
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Konstitutives Reibgesetz zur Beschreibung und Optimierung von Tailored Surfaces
    • Materialmechanik
      • Zur Formulierung und zum mikromechanischen Ursprung von Diffusionsmodellen
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
      • Modeling and computation of solvent penetration in glassy polymers
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Materialmodellierung von geschichteten Blechpaketen
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Materialmodellierung von geschichteten Blechpaketen
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Modellierung von Unsicherheiten
      • C3: Parameter- und Formoptimierung in der finiten Elastoplastizität
      • Fuzzy-arithmetische Modellierung von Prozessen mir unsicheren Parametern
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
    • Multiskalenmechanik
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoskopische Modellierung und Simulation der Eigenschaften additiv gefertigter metallischer Bauteile (C5)
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Prozesssimulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Makroskopische Modellierung, Simulation und Optimierung des selektiven Strahlschmelzens mit pulverförmigen Ausgangswerkstoffen (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Strukturdynamik
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
      • Schwingungsreduktion durch Energietransfer mittels Formadaption
      • Strukturdynamik rotierender Systeme
      • Untersuchung und Reduktion nichtlinearer Schwingungssysteme mit Hilfe modaler Ansätze
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
    • Optimierung
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Weitere Projekte
      • Ein numerisches Model für den translatorischen und rotatorischen Impulstransfer von kleinen nicht-sphärischen starren Partikeln in fluid-dominierten Zweiphasenströmungen
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publikationen
    • Dissertationen
    Portal Forschung
  • Lehre
    • Arbeitsthemen
    • Lehrveranstaltungen
    • Prüfungsangelegenheiten
    • LTM juniors
    Portal Lehre
  • Veranstaltungen
    • Tagungen
      • ICEAM2017
    • Gastvorträge
      • 2007
      • 2008
      • 2009
      • 2010
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
      • 2019
      • 2020
      • 2021
      • 2022
      • 2023
      • 2024
    Portal Veranstaltungen
  1. Startseite
  2. Lehrstuhl für Technische Mechanik
  3. Forschung
  4. Materialmechanik
  5. Modeling and computation of solvent penetration in glassy polymers

Modeling and computation of solvent penetration in glassy polymers

Bereichsnavigation: Lehrstuhl für Technische Mechanik
  • Lehre
  • Lehrstuhl
  • Mocopoly
  • SFB 814
  • Team
  • Veranstaltungen
  • Forschung
    • Biomechanik
    • Kontaktmechanik
    • Materialmechanik
      • Skalenübergreifende Modellierung - von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
      • Modeling and computation of solvent penetration in glassy polymers
      • Zur Formulierung und zum mikromechanischen Ursprung von Diffusionsmodellen
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Materialmodellierung von geschichteten Blechpaketen
    • Modellierung von Unsicherheiten
    • Makroskopische Modellierung, Simulation und Optimierung des selektiven Strahlschmelzens mit pulverförmigen Ausgangswerkstoffen (C03)
    • Multiskalenmechanik
    • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
    • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
    • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
    • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
    • Ein numerisches Model für den translatorischen und rotatorischen Impulstransfer von kleinen nicht-sphärischen starren Partikeln in fluid-dominierten Zweiphasenströmungen
    • On the Modelling and Computation of Magneto-Sensitive-Elastomers
    • Prozesssimulation
    • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Modeling and computation of solvent penetration in glassy polymers
    • Zur Formulierung und zum mikromechanischen Ursprung von Diffusionsmodellen
    • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
    • Strukturdynamik
    • Optimierung
    • Weitere Projekte

Modeling and computation of solvent penetration in glassy polymers

Es konnte kein Kontakteintrag mit der angegebenen ID -1 gefunden werden.

Modeling and computation of solvent penetration in glassy polymers

(Drittmittelfinanzierte Einzelförderung)

Titel des Gesamtprojektes:
Projektleitung: Paul Steinmann
Projektbeteiligte:
Projektstart: 1. Juli 2009
Projektende: 30. Juli 2011
Akronym:
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL:

Abstract

The main goal of this proposal is the computational modeling of solvent penetration in glassy polymers. For most engineering applications, Fick s law accurately describes diffusive processes, but one of the applications where it miserably fails is in glassy polymers near the glass transition temperature. In the vicinity of the glass transition temperature, when a low molecular weight solvent diffuses into a glassy polymer, the latter is caused to undergo a rubber-glass phase transition. The diffsive process follows non-Fickian behavior. Whereas the classical Fickian diffusion is referred to as case I diffusion, diffusion in glassy polymers is known as non-Fickian „case II diffusion“. A typical system undergoing case II diffusion is polymethylmethacrylate (PMMA) and methanol, for example.Modeling polymers which undergo case II diffusion is of particular interest in pharmaceutical and automotive industries, for example. Due to the importance of diffusion in many industrial and biological processes, a complete examination from a variety of perspectives and techniques is necessary. One tool at hand is the computational modeling at which this project aims. Hereby, an all-embracing theoretical model is to be set up extending existing approaches. Thus the very challenging modeling of non-Fickian behavior is one main task of this project. The numerical implementation of this ambitious theory is to be done subsequently in order to computationally model distinct typical applications from engineering or biomechanics.

Publikationen

    Lehrstuhl für Technische Mechanik
    Friedrich-Alexander-Universität Erlangen-Nürnberg

    Egerlandstraße 5
    91058 Erlangen
    • Kontakt
    • Impressum
    • Datenschutz
    • Barrierefreiheit
    • Facebook
    • Instagram
    • Twitter
    • Wikipedia
    Nach oben