• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Technische Mechanik
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Mein Campus
  • UnivIS
  • StudOn
  • Lageplan
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Lehrstuhl für Technische Mechanik
Menu Menu schließen
  • Lehrstuhl
    • Team
    • Ehemalige Mitarbeiter
    • Zweigbibliothek
    • Stellenangebote
    Portal Lehrstuhl
  • Forschung
    • Biomechanik
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
    • Kontaktmechanik
      • Materialmodellierung von geschichteten Blechpaketen
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Konstitutives Reibgesetz zur Beschreibung und Optimierung von Tailored Surfaces
    • Materialmechanik
      • Zur Formulierung und zum mikromechanischen Ursprung von Diffusionsmodellen
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
      • Modeling and computation of solvent penetration in glassy polymers
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Materialmodellierung von geschichteten Blechpaketen
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Materialmodellierung von geschichteten Blechpaketen
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Modellierung von Unsicherheiten
      • C3: Parameter- und Formoptimierung in der finiten Elastoplastizität
      • Fuzzy-arithmetische Modellierung von Prozessen mir unsicheren Parametern
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
    • Multiskalenmechanik
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoskopische Modellierung und Simulation der Eigenschaften additiv gefertigter metallischer Bauteile (C5)
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Prozesssimulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Makroskopische Modellierung, Simulation und Optimierung des selektiven Strahlschmelzens mit pulverförmigen Ausgangswerkstoffen (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Strukturdynamik
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
      • Schwingungsreduktion durch Energietransfer mittels Formadaption
      • Strukturdynamik rotierender Systeme
      • Untersuchung und Reduktion nichtlinearer Schwingungssysteme mit Hilfe modaler Ansätze
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
    • Optimierung
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Weitere Projekte
      • Ein numerisches Model für den translatorischen und rotatorischen Impulstransfer von kleinen nicht-sphärischen starren Partikeln in fluid-dominierten Zweiphasenströmungen
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publikationen
    • Dissertationen
    Portal Forschung
  • Lehre
    • Arbeitsthemen
    • Lehrveranstaltungen
    • Prüfungsangelegenheiten
    • LTM juniors
    Portal Lehre
  • Veranstaltungen
    • Tagungen
      • ICEAM2017
    • Gastvorträge
      • 2007
      • 2008
      • 2009
      • 2010
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
      • 2019
      • 2020
      • 2021
      • 2022
      • 2023
      • 2024
    Portal Veranstaltungen
  1. Startseite
  2. Lehrstuhl für Technische Mechanik
  3. Forschung
  4. Multiskalenmechanik

Multiskalenmechanik

Bereichsnavigation: Lehrstuhl für Technische Mechanik
  • Lehre
  • Lehrstuhl
  • Mocopoly
  • SFB 814
  • Team
  • Veranstaltungen
  • Forschung
    • Biomechanik
    • Kontaktmechanik
    • Materialmechanik
    • Modellierung von Unsicherheiten
    • Makroskopische Modellierung, Simulation und Optimierung des selektiven Strahlschmelzens mit pulverförmigen Ausgangswerkstoffen (C03)
    • Multiskalenmechanik
      • Skalenübergreifende Modellierung - von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Meso- und makroskopische Modellierung, Simulation und numerische Homogenisierung des Materialverhaltens metallischer Werkstoffe in der additiven Fertigung
    • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
    • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
    • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
    • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
    • Ein numerisches Model für den translatorischen und rotatorischen Impulstransfer von kleinen nicht-sphärischen starren Partikeln in fluid-dominierten Zweiphasenströmungen
    • On the Modelling and Computation of Magneto-Sensitive-Elastomers
    • Prozesssimulation
    • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Modeling and computation of solvent penetration in glassy polymers
    • Zur Formulierung und zum mikromechanischen Ursprung von Diffusionsmodellen
    • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
    • Strukturdynamik
    • Optimierung
    • Weitere Projekte

Multiskalenmechanik

Das mechanische Verhalten von Ingenieurmaterialien wird durch ihre heterogene Mikrostruktur beeinflusst. Auf Grund großer Längenskalenunterschiede ist es meistens nicht möglich diesen Einfluss in Bauteilsimulationen explizit zu erfassen. Daher kommen Multiskalen-Ansätze in der Materialmodellierung zum Einsatz. Die heterogene Mikrostruktur wird auf einer kleinen Längenskala explizit modelliert (innerhalb sogenannter Repräsentativer Volumenelemente) und mit Hilfe numerischer Homogenisierung wird ihr Einfluss auf das makroskopische Materialverhalten in gemittelter Form bestimmt.

Projekte:

Laufzeit: 1. Januar 2016 - 30. September 2018
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Projektleitung: Denis Davydov

Dieser Antrag befasst sich mit einem gekoppelten Quantenmechanik (QM) - Kontinuumsmechanik (KM) - Ansatz zur Analyse elektro-elastischer Probleme. Trotz der Anstrengungen, die bereits unternommen wurden um die verschiedenen Modelle zur Beschreibung des Verhaltens von Materie zusammenzuführen, gibt es noch offene Fragen, die weiterer Klärung bedürfen. Zunächst gilt es einen effizienten, auf Finiten Elementen (FE) basierenden Lösungsansatz für die Kohn-Sham (KS) Gleichungen…

→ Mehr Informationen

Laufzeit: 1. Januar 2014 - 31. Dezember 2016
Mittelgeber: EU - 7. RP / Cooperation / Verbundprojekt (CP)
Projektleitung: Paul Steinmann

→ Mehr Informationen

Laufzeit: 1. April 2012 - 31. März 2017
Mittelgeber: EU - 7. RP / Ideas / ERC Advanced Investigator Grant (AdG)
Projektleitung: Paul Steinmann

MOCOPOLY is a careful revision of an AdG2010-proposal that was evaluated above the quality threshold in steps1&2. In the meantime the applicant has made further considerable progress related to the topics of MOCOPOLY. Magneto-sensitive polymers (elastomers) are novel smart materials composed of a rubber-like matrix filled with magneto-active particles. The non-linear elastic characteristics of the matrix combined with the magnetic properties of the particles allow these compounds to deform…

→ Mehr Informationen

Laufzeit: seit 1. Mai 2008
Projektleitung: Paul Steinmann, Sebastian Pfaller

Klassische kontinuierliche Ansätze berücksichtigen die besondere atomare oder molekulare Struktur von Materialien nicht explizit. Somit sind sie für die korrekte Beschreibung hochgradig multiskaliger Phänomene wie beispielsweise Rissausbreitung oder Interphaseneffekte in Polymerwerkstoffen nicht gut geeignet. Um die atomare Auflösungsebene zu integrieren, wurde die „Capriccio“-Methode als eine neuartige Multiskalentechnik entwickelt. Sie wird z.B. für die Untersuchung des Einflusses nanoskali…

→ Mehr Informationen

Laufzeit: 1. August 2014 - 31. Dezember 2025
Projektleitung: Paul Steinmann

Aussagefähige Bauteilsimulationen erfordern eine quantitativ exakte Kenntnis der Materialeigenschaften. Dabei sind klassische Charakterisierungsmethoden
teilweise aufwendig, in der Variation und Kontrolle der Umgebungsbedingungen anspruchsvoll oder in der räumlichen Auflösung begrenzt. Das Projekt beschäftigt sich
deshalb mit der Ertüchtigung hochauflösender Meßmethoden wie Nanoindentation oder Rastkraftmikroskopie und der komplementierenden Entwicklung…

→ Mehr Informationen

Laufzeit: 1. Juli 2019 - 30. Juni 2023
Mittelgeber: DFG - Sonderforschungsbereiche
Projektleitung: Carolin Körner, Paul Steinmann

Ziel dieses Teilprojekts ist es, aufbauend auf den bisherigen Erkenntnissen der Teilprojekte B4 und C5 den Einfluss der Bauteilränder auf die resultierende Material/Bauteil-Mesostruktur für pulver- und strahlbasierte additive Fertigungsverfahren von Metallen zu berücksichtigen und die daraus folgenden meso- und makroskopischen mechanischen Eigenschaften modellbasiert zu bestimmen. Das mechanische Verhalten dieser Mesostrukturen und der Einfluss deren unvermeidbarer fertigungsbasierter geometrischer Unsicherheiten soll insbesondere für zellulare Gitterstrukturen numerisch modelliert, verifiziert, quantifiziert und validiert werden.

→ Mehr Informationen

Laufzeit: 2. Januar 2019 - 31. Dezember 2027
Mittelgeber: DFG / Graduiertenkolleg (GRK)
Projektleitung: Paul Steinmann, Michael Stingl

In a continuum the tendency of pre-existing cracks to propagate through the ambient material is assessed based on the established concept of configurational forces. In practise crack propagation is however prominently affected by the presence and properties of either surfaces and/or interfaces in the material. Here materials exposed to various surface treatments are mentioned, whereby effects of surface tension and crack extension can compete. Likewise, surface tension in inclusion-matrix interfaces can often not be neglected. In a continuum setting the energetics of surfaces/interfaces is captured by separate thermodynamic potentials. Surface potentials in general result in noticeable additions to configurational mechanics. This is particularly true in the realm of fracture mechanics, however its comprehensive theoretical/computational analysis is still lacking.

The project aims in a systematic account of the pertinent surface/interface thermodynamics within the framework of geometrically nonlinear configurational fracture mechanics. The focus is especially on a finite element treatment, i.e. the Material Force Method [6]. The computational consideration of thermodynamic potentials, such as the free energy, that are distributed within surfaces/interfaces is at the same time scientifically challenging and technologically relevant when cracks and their kinetics are studied.

→ Mehr Informationen

Laufzeit: 2. Januar 2019 - 31. Dezember 2027
Mittelgeber: DFG / Graduiertenkolleg (GRK)
Projektleitung: Julia Mergheim, Dirk Zahn

The mechanical properties and the fracture toughness of polymers can be increased by adding silica nanoparticles. This increase is mainly caused by the development of localized shear bands, initiated by the stress concentrations due to the silica particles. Other mechanisms responsible for the observed toughening are debonding of the particles and void growth in the matrix material. The particular mechanisms depend strongly on the structure and chemistry of the polymers and will be analysed for two classes of polymer-silica composites, with highly crosslinked thermosets or with biodegradable nestled fibres (cellulose, aramid) as matrix materials.

The aim of the project is to study the influence of different mesoscopic parameters, as particle volume fraction, on the macroscopic fracture properties of nanoparticle reinforced polymers.

→ Mehr Informationen

Laufzeit: 1. Oktober 2018 - 30. September 2020
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Projektleitung: Sebastian Pfaller

Kunststoffe spielen in Ingenieuranwendungen eine wichtige Rolle, wobei sie neue Möglichkeiten zur gezielten Einstellung von Materialeigenschaften bieten. Sie bestehen aus langkettigen Polymeren und bieten, zusammen mit z.B. Füllstoffen, ein enormes Potential für maßgeschneiderte Eigenschaften.

Moderne Verfahren erlauben es, Füllstoffpartikel mit typischen Abmessungen von einigen Nanometern herzustellen und in Polymeren zu dispergieren. Selbst bei geringem Volumenanteil können diese sog. Nanofüllstoffe - vermutlich durch das sehr große Verhältnis von Oberfläche zu Volumen - starken Einfluss auf die Eigenschaften der Kunststoffe haben. Der die Füllstoffpartikel umschließenden Polymer-Partikel-Interphase kommt hier eine entscheidende Bedeutung zu: wie Versuche zeigen, können bestimmte Nanofüllstoffe z.B. die Ermüdungslebensdauer von Kunststoffen um den Faktor 15 steigern.

Für eine effektive Auslegung solcher Nanokomposite sind häufig aufwändige mechanische Prüfungen erforderlich, die durch Simulationen ergänzt oder ersetzt werden könnten. Die üblicherweise Ingenieuranwendungen zugrunde liegende Kontinuumsmechanik zusammen mit der Finiten Elemente (FE) Methode ist hierfür aber kaum geeignet, da sie die Vorgänge auf molekularer Ebene nicht erfassen kann. Dazu ist z.B. die Molekulardynamik (MD) als teilchenbasiertes Verfahren in der Lage, die aber dafür nur äußerst kleine Systemgrößen und Simulationszeiten erlaubt. Erst die Kopplung beider Ansätze ermöglicht die Simulation realitätsnaher, sog. repräsentativer Volumenelemente (RVE) unter Einbeziehung atomistischer Effekte.

Ziel des über 4 Jahre laufenden Vorhabens ist die Entwicklung einer Methodik, mit der das Materialverhalten der Polymer-Partikel-Interphase in Nanokompositen kontinuumsmechanisch beschrieben kann, wobei die dafür erforderlichen Konstitutivgesetze aus teilchenbasierten Simulationen gewonnen werden. Da die Interphasen aufgrund ihrer sehr geringen Ausdehnung von einigen nm direkten experimentellen Untersuchungen nicht zugänglich sind, übernimmt eine teilchenbasierte Simulation die Rolle eines Experiments am realen Bauteil. Als Werkzeug steht die kürzlich entwickelte Capriccio-Methode zur MD-FE-Kopplung amorpher Systeme zur Verfügung, die im Vorhaben verwendet und entsprechend angepasst werden soll.

Mit der zu entwickelnden Methodik sollen mechanische Eigenschaften der Polymer-Partikel-Interphase mittels inverser Paramateridentifizierungen aus kleinen Systemen mit einem und zwei Nanopartikeln ermittelt und auf große RVE übertragen werden. Verschiedene Eigenschaften wie beispielsweise die Partikelgröße und -form oder abweichende grafting densities sollen sich durch Anwendung der Methodik aus rein teilchenbasierten Betrachtungen in kontinuumsbasierte Beschreibungen abbilden lassen. Die Behandlung auf der Ebene von RVE eröffnet dann weitere Möglichkeiten, die Materialbeschreibung auf eine ingenieurrelevante Ebene zu übertragen und für die Simulation von Bauteilen zu nutzen.

→ Mehr Informationen

Laufzeit: 2. Januar 2019 - 31. Dezember 2027
Mittelgeber: DFG / Graduiertenkolleg (GRK)
Projektleitung: Sebastian Pfaller, Ana-Suncana Smith

Nanocomposites have great potential for various applications since their properties may be tailored to particular needs. One of the most challenging fields of research is the investigation of mechanisms in nanocomposites which improve for instance the fracture toughness even at very low filler contents. Several failure processes may occur like crack pinning, bi-furcation, deflections, and separations. Since the nanofiller size is comparable to the typical dimensions of the monomers of the polymer chains, processes at the level of atoms and molecules have to be considered to model the material behaviour properly. In contrast, a pure particle-based description becomes computationally prohibitive for system sizes relevant in engineering. To overcome this, only e.g. the crack tip shall be resolved to the level of atoms or superatoms in a coarse-graining (CG) approach.

Thus, this project aims to extend the recently developed multiscale Capriccio method to adaptive particle-based regions moving within the continuum. With such a tool at hand, only the vicinity of a crack tip propagating through the material has to be described at CG resolution, whereas the remaining parts may be treated continuously with significantly less computational effort.

→ Mehr Informationen

Laufzeit: 2. Januar 2019 - 31. Dezember 2027
Mittelgeber: DFG / Graduiertenkolleg (GRK)
Projektleitung: Ana-Suncana Smith, Erik Bitzek, Sebastian Pfaller

Fracture is an inherently multiscale process in which processes at all length- and timescales can contribute to the dissipation of energy and thus determine the fracture toughness. While the individual processes can be studied by specifically adapted simulation methods, the interplay between these processes can only be studied by using concurrent multiscale modelling methods. While such methods already exist for inorganic materials as metals or ceramics, no similar methods have been established for polymers yet.

The ultimate goal of this postdoc project is to develop a concurrent multiscale modelling approach to study the interplay and coupling of process on different length scales (e.g. breaking of covalent bonds, chain relaxation processes, fibril formation and crazing at heterogeneities,…) during the fracture of an exemplary thermoset and its dependence on the (local) degree of cross-linking. In doing so, this project integrates results as well as the expertise developed in the other subprojects and complements their information-passing approach.

→ Mehr Informationen

Laufzeit: 2. Januar 2019 - 31. Dezember 2027
Mittelgeber: DFG / Graduiertenkolleg (GRK)
Projektleitung: Michael Zaiser, Paul Steinmann

Materials such as solid foams, highly-porous cohesive granulates, for aerogels possess a mode of failure not available to other solids. cracks may form and propagate even under compressive loads (‘anticracks’, ‘compaction bands’). This can lead to counter-intuitive modes of failure – for instance, brittle solid foams under compressive loading may deform in a quasi-plastic manner by gradual accumulation of damage (uncorrelated cell wall failure), but fail catastrophically under the same loading conditions once stress concentrations trigger anticrack propagation which destroys cohesion along a continuous fracture plane. Even more complex failure patterns may be observed in cohesive granulates if cohesion is restored over time by thermodynamically driven processes (sintering, adhesive aging of newly formed contacts), leading to repeated formation and propagation of zones of localized damage and complex spatio-temporal patterns as observed in sandstone, cereal packs, or snow.

We study failure processes associated with volumetric compaction in porous materials and develop micromechanical models of deformation and failure in the discrete, porous microstructures. We then make a scale transition to a continuum model which we parameterise using the discrete simulation results.

→ Mehr Informationen

Laufzeit: 1. Januar 2019 - 30. Juni 2023
Mittelgeber: Deutsche Forschungsgemeinschaft (DFG)
Projektleitung: Paul Steinmann

→ Mehr Informationen

Laufzeit: 2. Januar 2019 - 31. Dezember 2027
Mittelgeber: DFG / Graduiertenkolleg (GRK)
Projektleitung: Michael Stingl, Julia Mergheim

In previous works, the dependence of failure mechanisms in composite materials like debonding of the matrix-fibre interface or fibre breakage have been discussed.  The underlying model was based on specific cohesive zone elements, whose macroscopic properties could be derived from DFT. It has been shown that the dissipated energy could be increased by appropriate choices of cohesive parameters of the interface as well as aspects of the fibre. However due to the numerical complexity of applied simulation methods the crack path had to be fixed a priori. Only recently models allow computing the full crack properties at macroscopic scale in a quasi-static scenario by the solution of a single nonlinear variational inequality for a given set of material parameters and thus model based optimization of the fracture properties can be approached.

The goal of the project is to develop an optimization method, in the framework of which crack properties (e.g. the crack path) can be optimized in a mathematically rigorous way. Thereby material properties of matrix, fibre and interfaces should serve as optimization variables.

→ Mehr Informationen

Laufzeit: 1. Oktober 2019 - 30. September 2025
Mittelgeber: DFG-Einzelförderung / Emmy-Noether-Programm (EIN-ENP)
Projektleitung: Silvia Budday

Das Ziel diesesForschungsvorhabens ist es, mikromechanische Modelle für Gehirngewebe zuentwickeln, die es ermöglichen, Krankheiten früher zu diagnostizieren undBehandlungsmethoden zu optimieren. Zunächst wird das mechanische Verhalten vonGehirngewebe mithilfe innovativer Testmethoden über mehrere Zeit- undLängenskalen hinweg untersucht. Hierbei wird auch die Mikrostruktur getesteterProben analysiert – unter Berücksichtigung zellulärer, aber auchextrazellulärer Komponenten - um das komple…

→ Mehr Informationen

Laufzeit: 1. Juli 2018 - 30. Juni 2019
Projektleitung: Silvia Budday

→ Mehr Informationen

Laufzeit: 1. April 2019 - 31. März 2022
Projektleitung: Paul Steinmann

In diesem Projekt sollen Biopolymer-Hydrogele hergestellt und mechanisch charakterisiert werden. Sie dienen als Ersatzmaterialien, um das hochkomplexe Verhalten weicher biologischer Gewebe zu verstehen und zu modellieren. Es wird ein Katalog für Ersatzmaterialien für verschiedene weiche Gewebe entstehen, der die spezifischen Charakteristiken ihrer mechanischen Antwort mit dem entsprechenden Modellierungsansatz in Verbindung bringt. Dieser Katalog könnte es in Zukunft wesentlich erleichtern, geeignete Materialien für den 3D Druck künstlicher Organe zu wählen oder geeignete Modelle für prognostische Simulationen zu erstellen.

→ Mehr Informationen

Beteiligte Wissenschaftler:

  • Paul Steinmann
  • Sebastian Pfaller
  • Carolin Körner
  • Johannes Köpf
  • Ludwig Herrnböck
  • Silvia Budday
  • Nina Reiter
  • Alexander Greiner
  • Mohammad Saeed Zarzor
  • Emma Griffiths
  • Michael Zaiser
  • Aldo R. Boccaccini
  • Ben Fabry
  • Friedrich Paulsen
  • Ana-Suncana Smith
  • Erik Bitzek
  • Christian Wick
  • Denis Davydov
  • Gerhard Wellein
  • Christof Bauer
  • Wuyang Zhao
  • Maximilian Ries
  • Felix Weber
  • Michael Stingl
  • Julia Mergheim
  • Dirk Zahn
  • Paras Kumar
  • Maurice Rohracker
  • Seyedehelmira Birang Oskouei
  • Marie Laurien

Publikationen:

    Lehrstuhl für Technische Mechanik
    Friedrich-Alexander-Universität Erlangen-Nürnberg

    Egerlandstraße 5
    91058 Erlangen
    • Kontakt
    • Impressum
    • Datenschutz
    • Barrierefreiheit
    • Facebook
    • Instagram
    • Twitter
    • Wikipedia
    Nach oben