• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Technische Mechanik
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Mein Campus
  • UnivIS
  • StudOn
  • Lageplan
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Lehrstuhl für Technische Mechanik
Menu Menu schließen
  • Lehrstuhl
    • Team
    • Ehemalige Mitarbeiter
    • Zweigbibliothek
    • Stellenangebote
    Portal Lehrstuhl
  • Forschung
    • Biomechanik
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
    • Kontaktmechanik
      • Materialmodellierung von geschichteten Blechpaketen
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Konstitutives Reibgesetz zur Beschreibung und Optimierung von Tailored Surfaces
    • Materialmechanik
      • Zur Formulierung und zum mikromechanischen Ursprung von Diffusionsmodellen
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modellierung und Simulation nichtlinear elektro-thermo-visko-elastischer EAPs (Electronic Electro-Active Polymers)
      • Modellierung und Simulation von Wachstum in weichen Biomaterialien
      • Modeling and computation of solvent penetration in glassy polymers
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Materialmodellierung von geschichteten Blechpaketen
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Materialmodellierung von geschichteten Blechpaketen
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Modellierung von Unsicherheiten
      • C3: Parameter- und Formoptimierung in der finiten Elastoplastizität
      • Fuzzy-arithmetische Modellierung von Prozessen mir unsicheren Parametern
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
      • Eine hybride Sampling-Stochastische-Finite-Element-Methode für polymorphe, mikrostrukturelle Unsicherheiten in heterogenen Materialien
    • Multiskalenmechanik
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoskopische Modellierung und Simulation der Eigenschaften additiv gefertigter metallischer Bauteile (C5)
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Skalenübergreifende Modellierung – von der Quanten- zur Kontinuumsmechanik. Ein Finite-Elemente Ansatz.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Prozesssimulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Makroskopische Modellierung, Simulation und Optimierung des selektiven Strahlschmelzens mit pulverförmigen Ausgangswerkstoffen (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Strukturdynamik
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
      • Schwingungsreduktion durch Energietransfer mittels Formadaption
      • Strukturdynamik rotierender Systeme
      • Untersuchung und Reduktion nichtlinearer Schwingungssysteme mit Hilfe modaler Ansätze
      • Modellreduktion nichtlinearer gyroskopischer Systeme in ALE-Formulierung mit Reibkontakt
    • Optimierung
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Diskrete und kontinuierliche Methoden für die Modellierung und Simulation von Polymermaterialien
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Weitere Projekte
      • Ein numerisches Model für den translatorischen und rotatorischen Impulstransfer von kleinen nicht-sphärischen starren Partikeln in fluid-dominierten Zweiphasenströmungen
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publikationen
    • Dissertationen
    Portal Forschung
  • Lehre
    • Arbeitsthemen
    • Lehrveranstaltungen
    • Prüfungsangelegenheiten
    • LTM juniors
    Portal Lehre
  • Veranstaltungen
    • Tagungen
      • ICEAM2017
    • Gastvorträge
      • 2007
      • 2008
      • 2009
      • 2010
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
      • 2019
      • 2020
      • 2021
      • 2022
      • 2023
      • 2024
    Portal Veranstaltungen
  1. Startseite
  2. Lehrstuhl für Technische Mechanik
  3. Veranstaltungen
  4. Gastvorträge
  5. 2009

2009

Bereichsnavigation: Lehrstuhl für Technische Mechanik
  • Lehre
  • Lehrstuhl
  • Mocopoly
  • SFB 814
  • Team
  • Veranstaltungen
    • Gastvorträge
      • 2007
      • 2008
      • 2009
      • 2010
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
    • Tagungen
  • Forschung

2009

16.11.2009

Dipl.-Ing. Markus Klassen, Chair of Applied Mechanics, TU Kaiserslautern

Analyse und Anwendung der rationalen B-Spline Finite Elemente Methode in 2D

 

12.10.2009

Prof. Ellen Kuhl, Computational Biomechanics Laboratory, Stanford University, USA

The virtual heart: A multiscale continuum approach towards computational cardiology

 

24.09.2009

Prof. Gal deBotton, Ben-Gurion University, Israel

Hyperelastic fiber composites – Homogenization and macroscopic stability

 

04.09.2009

Prof. A.F.M. Saiful Amin, Department of Civil Engineering, Bangladesh University of Engineering and Technology, Bangladesh

On developing a physically-based and thermomechanically-consistent constitutive theory for rubbers with special reference to temperature history effects: Some thoughts for the future studies

 

10.07.2009

Prof. A. Arockiarajan, Department of Applied Mechanics, Indian Institute of Technology Madras, India

Modelling approaches on electromechanical coupled problems

 

26.06.2009

Prof. Georg-Peter Ostermeyer, Institut für Dynamik und Schwingungen, TU Carolo-Wilhelmina, Braunschweig

Selbstorganisation und Selbstsynchronisation im Reibkontakt

 

15.06.2009

Prof. Eberhard Bänsch, Lehrstuhl für Angewandte Mathematik III, Universität Erlangen

Numerik für die instationären Navier-Stokes Gleichungen mit freiem Kapillarrand

 

Dipl.-Ing. Michael Scherer, Lehrstuhl für Technische Mechanik, Universität Erlangen

A fictitious energy constraint for (node-based) shape optimization

 

08.06.2009

Dr. Ralf Meske, Leiter Technische Berechnung Kolben, Federal-Mogul Nürnberg GmbH

Parameterfreie Gestaltoptimierung über Optimalitätskriterien

 

28.05.2009

Prof. Paolo Podio-Guidugli, Department of Civil Engineering, University of Rome

Charting energy landscapes by molecular dynamics

 

25.05.2009

Andrew McBride, University of Cape Town, South Africa

Aspects of a model of gradient crystal plasticity

 

21.04.2009

Prof. Adnan Ibrahimbegovic, Ecole Nomale Supérieure de Cachan, France

Multi-scale analysis, identification and design of heterogeneous materials with inelastic behavior

 

20.04.2009

Dipl.-Math. Andreas Rademacher, Fakultät für Mathematik, Lehrstuhl LSX, TU Dortmund

Simulation of Engineering Processes using the Arbitrary Lagrangian Eulerian (ALE) approach

 

16.03.2009

Dr.-Ing. Christian Hesch, Universität Siegen

Energy-momentum schemes for large deformation contact problems

 

25.02.2009

Dr.-Ing. Michael C. Böhm, TU Darmstadt

Basic Principles of Molecular Dynamics Simulations

 

26.01.2009

Prof. Jörn Mosler, Uni Kiel/GKSS

On variational constitutive updates

 

19.01.2009

Prof. Alexander Lion, Universität der Bundeswehr München

Simulation des Aushärteverhaltens von Klebstoffen. Experimente und Modellbildung

 

Lehrstuhl für Technische Mechanik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Egerlandstraße 5
91058 Erlangen
  • Kontakt
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • Instagram
  • Twitter
  • Wikipedia
Nach oben