Budday, Silvia, Dr.-Ing.

Prof. Dr.-Ing. Silvia Budday

Department Maschinenbau (MB)
Lehrstuhl für Kontinuumsmechanik (Schwerpunkt Biomechanik) (LKM, Prof. Budday)

Raum: Raum 00.011
Egerlandstr. 5
91058 Erlangen

Short Bio

Silvia Budday, currently a full professor heading the Institute of Continuum Mechanics and Biomechanics (LKM), studied Mechanical Engineering at the Karlsruhe Institute of Technology (KIT), where she graduated with one of the four best Bachelor’s degrees in 2011 and the best Master’s degree of a female student in 2013. During her Master’s studies, she spent one year abroad at Purdue University, Indiana, USA, for which she received an international scholarship by the DAAD (German Academic Exchange Service). She was also a scholar of the German Academic Scholarship Foundation. She did her PhD on “The Role of Mechanics during Brain Development” at FAU supervised by Prof. Paul Steinmann in close collaboration with Prof. Ellen Kuhl at Stanford University and Prof. Gerhard Holzapfel at Graz University of Technology. She finished her PhD in December 2017 with “summa cum laude” and was awarded the GACM Best PhD Award (German Association for Computational Mechanics) and the ECCOMAS Best PhD Award for one of the two best PhD theses in the field of Computational Methods in Applied Sciences and Engineering in Europe in 2017. Furthermore, she received the Bertha Benz-Prize from the Daimler und Benz Stiftung as a woman visionary pioneer in engineering, and the 2017 Acta Journals Students Award. In July 2018, she received an Emerging Talents Initiative (ETI) Grant, and in October 2018 an Emerging Fields Initiative (EFI) Grant by the FAU. Since April 2019, she is leading a research group in the Emmy Noether-Programme by the German Research Foundation (DFG) on BRAIn mechaNIcs ACross Scales (BRAINIACS). In 2021, she was awarded the Heinz Maier-Leibnitz-Prize by the DFG and BMBF and the Richard-von-Mises-Prize by the International Association of Applied Mathematics and Mechanics (GAMM). Her work focuses on experimental and computational soft tissue biomechanics with special emphasis on brain mechanics and the relationship between brain structure and function.

Forschung

  • Biofabrizierte Gradienten für funktionale Ersatzgewebe (B09*)

    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)

    Titel des Gesamtprojektes: TRR 225: Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen
    Laufzeit: seit 1. Januar 2022
    Mittelgeber: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
    URL: https://trr225biofab.de/project-b09/

    Ziel dieses Projekts ist es, eine Plattformtechnologie zu entwickeln, um in Raum und Zeit klar definierte und reproduzierbare Gradienten herzustellen, diese zu analysieren und in silico zu modellieren, um ihre Auswirkung auf Zell-Biomaterial-Interaktionen untersuchen zu können. Hierfür sollen zunächst Druckköpfe entwickelt werden, mit denen sich kontrolliert Übergänge von Materialien aus den A-/B-Projekten, Wirkstoffen und Zellen erzeugen lassen. Durch die umfassende Charakterisierung der gedruckten Gradienten mithilfe mechanischer Testmethoden in Kombination mit bildgebenden Verfahren wird das Ergebnis bezüglich der Anforderungen der C-Projekte stetig analysiert und verbessert. Zusätzlich werden kontinuumsmechanische Modellierung und Simulation gezielt eingesetzt, um Prozessparameter, das Druckmuster und die 3D-Anordung im Konstrukt zu optimieren.

  • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 1. Oktober 2019 - 30. September 2025
    Mittelgeber: DFG-Einzelförderung / Emmy-Noether-Programm (EIN-ENP)
    URL: https://www.brainiacs.forschung.fau.de/

    Das Ziel diesesForschungsvorhabens ist es, mikromechanische Modelle für Gehirngewebe zuentwickeln, die es ermöglichen, Krankheiten früher zu diagnostizieren undBehandlungsmethoden zu optimieren. Zunächst wird das mechanische Verhalten vonGehirngewebe mithilfe innovativer Testmethoden über mehrere Zeit- undLängenskalen hinweg untersucht. Hierbei wird auch die Mikrostruktur getesteterProben analysiert – unter Berücksichtigung zellulärer, aber auchextrazellulärer Komponenten - um das komplexe Zusammenspiel von Mikrostruktur,Mechanik und Hirnfunktion zu verstehen. Es wird weiterhin experimentelluntersucht, wie sich Mikrostruktur und Mechanik des Gewebes während derEntwicklung, aufgrund von Krankheit oder durch Einwirkung mechanischer Kräfteverändern. Anhand der neuen Erkenntnisse werden anschließend mechanischeModelle entwickelt, die das regionsabhängige Verhalten von Gehirngewebebeschreiben, aber auch Veränderungen während der Entwicklung, durch Homöostaseoder durch Krankheit vorhersagen. Durch die Implementierung der Modelleinnerhalb einer Finite-Elemente-Umgebung werden klinisch relevanteFragestellungen durch rechnergestützte Simulationen untersucht. Das Modellstellt hierbei die Verbindung zwischen häufig schon bekanntenMikrostrukturveränderungen und durch bildgebende Verfahren erkennbarenmakroskopischen Veränderungen der Hirnstruktur her. Zusammengenommen können diehier entwickelten interdisziplinären Testmethoden, in Kombination mit denkomplexen Simulationsmodellen, den Grundstein für realistische, numerischeVorhersagen zur Früherkennung von Krankheiten oder zur Weiterentwicklunginnovativer Behandlungsmethoden legen. Nicht zuletzt tragen die entwickeltenModelle dazu bei, den Bedarf an Tier- und Menschenversuchen zu reduzierendenund den 3D Druck künstlicher Organe voranzutreiben.

  • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics

    (FAU Funds)

    Laufzeit: 1. April 2019 - 31. März 2022
    URL: https://www.biohydrogels.forschung.fau.de/

    Biological tissues such as blood vessels, skin, cartilage or nervous tissue provide vital functionality
    to living organisms. Novel computational simulations of these tissues can provide insights
    into their biomechanics during injury and disease that go far beyond traditional approaches. This
    is of ever increasing importance in industrial and medical applications as numerical models will
    enable early diagnostics of diseases, detailed planning and optimization of surgical procedures,
    and not least will reduce the necessity of animal and human experimentation. However, the extreme
    compliance of these, from a mechanical perspective, particular soft tissues stretches conventional
    modeling and testing approaches to their limits. Furthermore, the diverse microstructure
    has, to date, hindered their systematic mechanical characterization. In this project, we will, as a
    novel perspective, categorize biological tissues according to their mechanical behavior and identify
    biofabricated proxy (substitute) materials with similar properties to reduce challenges related
    to experimental characterization of living tissues. We will further develop appropriate mathematical
    models that allow us to computationally predict the tissue response based on these proxy
    materials. Collectively, we will provide a catalogue of biopolymeric proxy materials for different
    soft tissues with corresponding modeling approaches. As a prospect, this will significantly facilitate
    the choice of appropriate materials for 3D biofabrication of artificial organs, as well as modeling
    approaches for predictive simulations. These form the cornerstone of advanced medical
    treatment strategies and engineering design processes, leveraging virtual prototyping.

  • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics

    (FAU Funds)

    Laufzeit: 1. Juli 2018 - 30. Juni 2019
  • Modellierung und Simulation von Wachstum in weichen Biomaterialien

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 1. Februar 2014 - 30. Juni 2020
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)

Publikationen

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

Lehre

Biomechanik

Seit 2018

Linear Continuum Mechanics

Wintersemester 2019/2020

Introduction to Neuromechanics

Sommersemester 2016 und 2019