Navigation

Dr.-Ing. Silvia Budday

Short Bio

Silvia Budday, currently an Independent Junior Research Group Leader in the Emmy Noether-Programme („BRAINIACS – BRAIn mechaNIcs ACross Scales“) at the LTM, studied Mechanical Engineering at the Karlsruhe Institute of Technology (KIT), where she graduated with one of the four best Bachelor’s degrees in 2011 and the best Master’s degree of a female student in 2013. During her Master’s studies, she spent one year abroad at Purdue University, Indiana, USA, for which she received an international scholarship by the DAAD (German Academic Exchange Service). She was also a scholar of the German Academic Scholarship Foundation. She did her PhD on “The Role of Mechanics during Brain Development” at FAU supervised Prof. Paul Steinmann in close collaboration with Prof. Ellen Kuhl at Stanford University and Prof. Gerhard Holzapfel at Graz University of Technology. She finished her PhD in December 2017 with “summa cum laude” and was awarded the GACM Best PhD Award (German Association for Computational Mechanics) and the ECCOMAS Best PhD Award for one of the two best PhD theses in the field of Computational Methods in Applied Sciences and Engineering in Europe in 2017. Furthermore, she received the Bertha Benz-Prize from the Daimler und Benz Stiftung as a woman visionary pioneer in engineering, and the 2017 Acta Journals Students Award. In July 2018, she received an Emerging Talents Initiative (ETI) Grant, and in October 2018 an Emerging Fields Initiative (EFI) Grant by the FAU. Since April 2019, she is an Independent Junior Research Group Leader in the Emmy Noether-Programme by the German Research Foundation (DFG). Her work focuses on experimental and computational soft tissue biomechanics with special emphasis on brain mechanics and the relationship between brain structure and function.

  • Modellierung und Simulation von Wachstum in weichen Biomaterialien
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. Februar 2014 - 30. April 2018
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
  • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
    (Drittmittelfinanzierte Einzelförderung)
    Laufzeit: 1. August 2019 - 31. Juli 2022
    Mittelgeber: DFG-Einzelförderung / Emmy-Noether-Programm (EIN-ENP)
    URL: https://www.brainiacs.forschung.fau.de/

    Das Ziel dieses
    Forschungsvorhabens ist es, mikromechanische Modelle für Gehirngewebe zu
    entwickeln, die es ermöglichen, Krankheiten früher zu diagnostizieren und
    Behandlungsmethoden zu optimieren. Zunächst wird das mechanische Verhalten von
    Gehirngewebe mithilfe innovativer Testmethoden über mehrere Zeit- und
    Längenskalen hinweg untersucht. Hierbei wird auch die Mikrostruktur getesteter
    Proben analysiert – unter Berücksichtigung zellulärer, aber auch
    extrazellulärer Komponenten - um das komplexe Zusammenspiel von Mikrostruktur,
    Mechanik und Hirnfunktion zu verstehen. Es wird weiterhin experimentell
    untersucht, wie sich Mikrostruktur und Mechanik des Gewebes während der
    Entwicklung, aufgrund von Krankheit oder durch Einwirkung mechanischer Kräfte
    verändern. Anhand der neuen Erkenntnisse werden anschließend mechanische
    Modelle entwickelt, die das regionsabhängige Verhalten von Gehirngewebe
    beschreiben, aber auch Veränderungen während der Entwicklung, durch Homöostase
    oder durch Krankheit vorhersagen. Durch die Implementierung der Modelle
    innerhalb einer Finite-Elemente-Umgebung werden klinisch relevante
    Fragestellungen durch rechnergestützte Simulationen untersucht. Das Modell
    stellt hierbei die Verbindung zwischen häufig schon bekannten
    Mikrostrukturveränderungen und durch bildgebende Verfahren erkennbaren
    makroskopischen Veränderungen der Hirnstruktur her. Zusammengenommen können die
    hier entwickelten interdisziplinären Testmethoden, in Kombination mit den
    komplexen Simulationsmodellen, den Grundstein für realistische, numerische
    Vorhersagen zur Früherkennung von Krankheiten oder zur Weiterentwicklung
    innovativer Behandlungsmethoden legen. Nicht zuletzt tragen die entwickelten
    Modelle dazu bei, den Bedarf an Tier- und Menschenversuchen zu reduzierenden
    und den 3D Druck künstlicher Organe voranzutreiben.

2019

2018

2017

2016

2015

2014

Introduction to Neuromechanics

Sommersemester 2016 und 2019

Biomechanik

Sommersemester 2018 und 2019