Budday, Silvia, Dr.-Ing.
Prof. Dr.-Ing. Silvia Budday
Short Bio
Silvia Budday, currently a full professor heading the Institute of Continuum Mechanics and Biomechanics (LKM), studied Mechanical Engineering at the Karlsruhe Institute of Technology (KIT), where she graduated with one of the four best Bachelor’s degrees in 2011 and the best Master’s degree of a female student in 2013. During her Master’s studies, she spent one year abroad at Purdue University, Indiana, USA, for which she received an international scholarship by the DAAD (German Academic Exchange Service). She was also a scholar of the German Academic Scholarship Foundation. She did her PhD on “The Role of Mechanics during Brain Development” at FAU supervised by Prof. Paul Steinmann in close collaboration with Prof. Ellen Kuhl at Stanford University and Prof. Gerhard Holzapfel at Graz University of Technology. She finished her PhD in December 2017 with “summa cum laude” and was awarded the GACM Best PhD Award (German Association for Computational Mechanics) and the ECCOMAS Best PhD Award for one of the two best PhD theses in the field of Computational Methods in Applied Sciences and Engineering in Europe in 2017. Furthermore, she received the Bertha Benz-Prize from the Daimler und Benz Stiftung as a woman visionary pioneer in engineering, and the 2017 Acta Journals Students Award. In July 2018, she received an Emerging Talents Initiative (ETI) Grant, and in October 2018 an Emerging Fields Initiative (EFI) Grant by the FAU. Since April 2019, she is leading a research group in the Emmy Noether-Programme by the German Research Foundation (DFG) on BRAIn mechaNIcs ACross Scales (BRAINIACS). In 2021, she was awarded the Heinz Maier-Leibnitz-Prize by the DFG and BMBF and the Richard-von-Mises-Prize by the International Association of Applied Mathematics and Mechanics (GAMM). Her work focuses on experimental and computational soft tissue biomechanics with special emphasis on brain mechanics and the relationship between brain structure and function.
Forschung
-
Biofabrizierte Gradienten für funktionale Ersatzgewebe (B09*)
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: TRR 225: Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen
Laufzeit: seit 1. Januar 2022
Mittelgeber: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://trr225biofab.de/project-b09/Ziel dieses Projekts ist es, eine Plattformtechnologie zu entwickeln, um in Raum und Zeit klar definierte und reproduzierbare Gradienten herzustellen, diese zu analysieren und in silico zu modellieren, um ihre Auswirkung auf Zell-Biomaterial-Interaktionen untersuchen zu können. Hierfür sollen zunächst Druckköpfe entwickelt werden, mit denen sich kontrolliert Übergänge von Materialien aus den A-/B-Projekten, Wirkstoffen und Zellen erzeugen lassen. Durch die umfassende Charakterisierung der gedruckten Gradienten mithilfe mechanischer Testmethoden in Kombination mit bildgebenden Verfahren wird das Ergebnis bezüglich der Anforderungen der C-Projekte stetig analysiert und verbessert. Zusätzlich werden kontinuumsmechanische Modellierung und Simulation gezielt eingesetzt, um Prozessparameter, das Druckmuster und die 3D-Anordung im Konstrukt zu optimieren.
-
BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Oktober 2019 - 30. September 2025
Mittelgeber: DFG-Einzelförderung / Emmy-Noether-Programm (EIN-ENP)
URL: https://www.brainiacs.forschung.fau.de/Das Ziel diesesForschungsvorhabens ist es, mikromechanische Modelle für Gehirngewebe zuentwickeln, die es ermöglichen, Krankheiten früher zu diagnostizieren undBehandlungsmethoden zu optimieren. Zunächst wird das mechanische Verhalten vonGehirngewebe mithilfe innovativer Testmethoden über mehrere Zeit- undLängenskalen hinweg untersucht. Hierbei wird auch die Mikrostruktur getesteterProben analysiert – unter Berücksichtigung zellulärer, aber auchextrazellulärer Komponenten - um das komplexe Zusammenspiel von Mikrostruktur,Mechanik und Hirnfunktion zu verstehen. Es wird weiterhin experimentelluntersucht, wie sich Mikrostruktur und Mechanik des Gewebes während derEntwicklung, aufgrund von Krankheit oder durch Einwirkung mechanischer Kräfteverändern. Anhand der neuen Erkenntnisse werden anschließend mechanischeModelle entwickelt, die das regionsabhängige Verhalten von Gehirngewebebeschreiben, aber auch Veränderungen während der Entwicklung, durch Homöostaseoder durch Krankheit vorhersagen. Durch die Implementierung der Modelleinnerhalb einer Finite-Elemente-Umgebung werden klinisch relevanteFragestellungen durch rechnergestützte Simulationen untersucht. Das Modellstellt hierbei die Verbindung zwischen häufig schon bekanntenMikrostrukturveränderungen und durch bildgebende Verfahren erkennbarenmakroskopischen Veränderungen der Hirnstruktur her. Zusammengenommen können diehier entwickelten interdisziplinären Testmethoden, in Kombination mit denkomplexen Simulationsmodellen, den Grundstein für realistische, numerischeVorhersagen zur Früherkennung von Krankheiten oder zur Weiterentwicklunginnovativer Behandlungsmethoden legen. Nicht zuletzt tragen die entwickeltenModelle dazu bei, den Bedarf an Tier- und Menschenversuchen zu reduzierendenund den 3D Druck künstlicher Organe voranzutreiben.
-
Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
(FAU Funds)
Laufzeit: 1. April 2019 - 31. März 2022
URL: https://www.biohydrogels.forschung.fau.de/Biological tissues such as blood vessels, skin, cartilage or nervous tissue provide vital functionality
to living organisms. Novel computational simulations of these tissues can provide insights
into their biomechanics during injury and disease that go far beyond traditional approaches. This
is of ever increasing importance in industrial and medical applications as numerical models will
enable early diagnostics of diseases, detailed planning and optimization of surgical procedures,
and not least will reduce the necessity of animal and human experimentation. However, the extreme
compliance of these, from a mechanical perspective, particular soft tissues stretches conventional
modeling and testing approaches to their limits. Furthermore, the diverse microstructure
has, to date, hindered their systematic mechanical characterization. In this project, we will, as a
novel perspective, categorize biological tissues according to their mechanical behavior and identify
biofabricated proxy (substitute) materials with similar properties to reduce challenges related
to experimental characterization of living tissues. We will further develop appropriate mathematical
models that allow us to computationally predict the tissue response based on these proxy
materials. Collectively, we will provide a catalogue of biopolymeric proxy materials for different
soft tissues with corresponding modeling approaches. As a prospect, this will significantly facilitate
the choice of appropriate materials for 3D biofabrication of artificial organs, as well as modeling
approaches for predictive simulations. These form the cornerstone of advanced medical
treatment strategies and engineering design processes, leveraging virtual prototyping. -
Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
(FAU Funds)
Laufzeit: 1. Juli 2018 - 30. Juni 2019 -
Modellierung und Simulation von Wachstum in weichen Biomaterialien
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Februar 2014 - 30. Juni 2020
Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Publikationen
2023
Mechanical behavior of the hippocampus and corpus callosum: An attempt to reconcile ex vivo with in vivo and micro with macro properties
In: Journal of the Mechanical Behavior of Biomedical Materials 138 (2023), Art.Nr.: 105613
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2022.105613
, , , , , , , , , , , , , :
On the importance of using region-dependent material parameters for full-scale human brain simulations
In: European Journal of Mechanics A-Solids 99 (2023), Art.Nr.: 104910
ISSN: 0997-7538
DOI: 10.1016/j.euromechsol.2023.104910
, , , :
Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
In: Frontiers in Bioengineering and Biotechnology 11 (2023), Art.Nr.: 1143304
ISSN: 2296-4185
DOI: 10.3389/fbioe.2023.1143304
, , , , , , , , :
Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials
In: Journal of the Mechanical Behavior of Biomedical Materials 138 (2023), Art.Nr.: 105618
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2022.105618
, , , , , :
2022
Tissue-Scale Biomechanical Testing of Brain Tissue for the Calibration of Nonlinear Material Models
In: Current Protocols 2 (2022), S. e381-
ISSN: 2691-1299
DOI: 10.1002/cpz1.381
, , , , :
Finite element modeling of traumatic brain injury: Areas of future interest
In: Current Opinion in Biomedical Engineering 24 (2022), Art.Nr.: 100421
ISSN: 2468-4511
DOI: 10.1016/j.cobme.2022.100421
, :
Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation
In: Advanced Healthcare Materials (2022)
ISSN: 2192-2640
DOI: 10.1002/adhm.202201826
, , , , , , , , , , , , , , :
Oxidized Hyaluronic Acid-Gelatin-Based Hydrogels for Tissue Engineering and Soft Tissue Mimicking
In: Tissue Engineering - Part C: Methods (2022)
ISSN: 1937-3384
DOI: 10.1089/ten.tec.2022.0004
, , , , , , , :
Biomechanical analysis of the cervical spine segment as a method for studying the functional and dynamic anatomy of the human neck
In: Annals of Anatomy-Anatomischer Anzeiger 240 (2022), Art.Nr.: 151856
ISSN: 0940-9602
DOI: 10.1016/j.aanat.2021.151856
, , , , , , , , , , , , :
Hyperelastic parameter identification of human articular cartilage and substitute materials
In: Journal of the Mechanical Behavior of Biomedical Materials 133 (2022)
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2022.105292
, , , , , , , :
2021
Neocortical development and epilepsy: insights from focal cortical dysplasia and brain tumours
In: Lancet Neurology 20 (2021), S. 943-955
ISSN: 1474-4422
DOI: 10.1016/S1474-4422(21)00265-9
, , , , , :
Editorial: Advances in Brain Mechanics
In: Frontiers in Mechanical Engineering 7 (2021)
ISSN: 2297-3079
DOI: 10.3389/fmech.2021.803151
, , :
Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels
In: Biomaterials Science (2021), Art.Nr.: d0bm02117b
ISSN: 2047-4830
DOI: 10.1039/D0BM02117B
URL: https://pubs.rsc.org/en/content/articlelanding/2021/bm/d0bm02117b
, , , , , , , , , :
Spinal Cord Neuronal Network Formation in a 3D Printed Reinforced Matrix—A Model System to Study Disease Mechanisms
In: Advanced Healthcare Materials (2021)
ISSN: 2192-2640
DOI: 10.1002/adhm.202100830
URL: https://onlinelibrary.wiley.com/doi/10.1002/adhm.202100830?af=R
, , , , , , :
Physical aspects of cortical folding
In: Soft Matter (2021)
ISSN: 1744-683X
DOI: 10.1039/d0sm02209h
, , :
Poro-Viscoelastic Effects During Biomechanical Testing of Human Brain Tissue
In: Frontiers in Mechanical Engineering 7 (2021), Art.Nr.: 708350
ISSN: 2297-3079
DOI: 10.3389/fmech.2021.708350
, , , , , , :
Unraveling the Local Relation Between Tissue Composition and Human Brain Mechanics Through Machine Learning
In: Frontiers in Bioengineering and Biotechnology 9 (2021)
ISSN: 2296-4185
DOI: 10.3389/fbioe.2021.704738
, , , , , , , :
Spatiotemporal modeling of first and second wave outbreak dynamics of COVID‐19 in Germany
In: Biomechanics and Modeling in Mechanobiology (2021)
ISSN: 1617-7959
DOI: 10.1007/s10237-021-01520-x
, , , , , , , , :
Insights into the Microstructural Origin of Brain Viscoelasticity
In: Journal of Elasticity 145 (2021), S. 99-116
ISSN: 0374-3535
DOI: 10.1007/s10659-021-09814-y
URL: https://link.springer.com/article/10.1007/s10659-021-09814-y
, , , :
A two-field computational model couples cellular brain development with cortical folding
In: Brain Multiphysics 2 (2021), S. 100025
ISSN: 2666-5220
DOI: 10.1016/j.brain.2021.100025
, , , , :
Exploring the interplay between cellular development and mechanics in the developing human brain
In: Proceedings in Applied Mathematics and Mechanics 21 (2021), Art.Nr.: e202100104
ISSN: 1617-7061
DOI: 10.1002/pamm.202100104
, , , , :
2020
Modeling the life cycle of the human brain
In: Current Opinion in Biomedical Engineering (2020)
ISSN: 2468-4511
DOI: 10.1016/j.cobme.2019.12.009
URL: https://www.sciencedirect.com/science/article/pii/S2468451119300832?via=ihub
, :
Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue
In: Archives of Computational Methods in Engineering 27 (2020), S. 1187–1230
ISSN: 1134-3060
DOI: 10.1007/s11831-019-09352-w
URL: https://link.springer.com/article/10.1007/s11831-019-09352-w
, , , , :
Towards microstructure-informed material models for human brain tissue
In: Acta Biomaterialia 104 (2020), S. 53-65
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2019.12.030
URL: https://www.sciencedirect.com/science/article/pii/S1742706119308682?via=ihub
, , , , , , , , , , :
Modeling the porous and viscous responses of human brain tissue behavior
In: Computer Methods in Applied Mechanics and Engineering 369 (2020), Art.Nr.: 113128
ISSN: 0045-7825
DOI: 10.1016/j.cma.2020.113128
URL: https://www.sciencedirect.com/science/article/pii/S0045782520303133
, , , , :
Alginate-based hydrogels show the same complex mechanical behavior as brain tissue
In: Journal of the Mechanical Behavior of Biomedical Materials 111 (2020), Art.Nr.: 103979
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2020.103979
URL: https://www.sciencedirect.com/science/article/abs/pii/S1751616120305312
, , , , :
Folding drives cortical thickness variations
In: European Physical Journal - Special Topics 229 (2020), S. 2757-2778
ISSN: 1951-6355
DOI: 10.1140/epjst/e2020-000001-6
, , , , , :
Memory-based meso-scale modeling of Covid-19
In: Computational Mechanics (2020)
ISSN: 0178-7675
DOI: 10.1007/s00466-020-01883-5
, , , , , , , :
Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair
In: Acta Biomaterialia (2020)
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2020.10.025
URL: https://www.sciencedirect.com/science/article/pii/S1742706120306140
, , , , , , , , , :
2019
Challenges and perspectives in brain tissue testing and modeling
In: Proceedings in Applied Mathematics and Mechanics accepted (2019)
ISSN: 1617-7061
, , , :
2018
The origin of compression influences geometric instabilities in bilayers
In: Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences (2018)
ISSN: 1364-5021
DOI: 10.1098/rspa.2018.0267
, , :
The Role of Mechanics during Brain Development (Dissertation, 2018)
URL: https://opus4.kobv.de/opus4-fau/frontdoor/index/index/year/2018/docId/9298
:
Region‐ and loading‐specific finite viscoelasticity of human brain tissue
In: Proceedings in Applied Mathematics and Mechanics 18 (2018), Art.Nr.: e201800169
ISSN: 1617-7061
DOI: 10.1002/pamm.201800169
, , , , , :
Symmetry Breaking in Wrinkling Patterns: Gyri Are Universally Thicker than Sulci
In: Physical Review Letters 121 (2018), Art.Nr.: 228002
ISSN: 0031-9007
DOI: 10.1103/PhysRevLett.121.228002
, , , :
2017
Wrinkling instabilities in soft bi-layered systems
In: Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 375 (2017)
ISSN: 1364-503X
DOI: 10.1098/rsta.2016.0163
, , , , :
Mechanical characterization of human brain tissue
In: Acta Biomaterialia 48 (2017), S. 319–340
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2016.10.036
, , , , , , , , , , :
Rheological characterization of human brain tissue
In: Acta Biomaterialia (2017)
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2017.06.024
, , , , , :
Viscoelastic parameter identification of human brain tissue
In: Journal of the Mechanical Behavior of Biomedical Materials 74 (2017), S. 463-476
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2017.07.014
, , , , :
On the influence of inhomogeneous stiffness and growth on mechanical instabilities in the developing brain
In: International Journal of Solids and Structures (2017)
ISSN: 0020-7683
DOI: 10.1016/j.ijsolstr.2017.08.010
, :
A family of hyperelastic models for human brain tissue
In: Journal of the Mechanics and Physics of Solids 106 (2017), S. 60-79
ISSN: 0022-5096
DOI: 10.1016/j.jmps.2017.05.015
, , , , :
The mechanical importance of myelination in the central nervous system
In: Journal of the Mechanical Behavior of Biomedical Materials (2017)
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2017.04.017
, , , , :
2016
Brain stiffness increases with myelin content
In: Acta Biomaterialia (2016), S. 265–272
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2016.07.040
, , , , , :
2015
Period-doubling and period-tripling in growing bilayered systems
In: Philosophical Magazine - (2015), S. 1-17
ISSN: 1478-6443
DOI: 10.1080/14786435.2015.1014443
, , :
Mechanical properties of gray and white matter brain tissue by indentation
In: Journal of the Mechanical Behavior of Biomedical Materials (2015), S. 318-330
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2015.02.024
, , , , , , :
Size and curvature regulate pattern selection in the mammalian brain
In: Extreme Mechanics Letters 4 (2015), S. 193-198
ISSN: 2352-4316
DOI: 10.1016/j.eml.2015.07.004
, , , :
Physical biology of human brain development
In: Frontiers in Cellular Neuroscience 9 (2015), S. 1-13
ISSN: 1662-5102
DOI: 10.3389/fncel.2015.00257
, , :
Secondary instabilities modulate cortical complexity in the mammalian brain
In: Philosophical Magazine 95 (2015), S. 3244–3256
ISSN: 1478-6435
DOI: 10.1080/14786435.2015.1024184
, , :
Primary and secondary instabilities in soft bilayered systems
GAMM Jahrestagung (Lecce)
In: PAMM, Weinheim: 2015
DOI: 10.1002/pamm.201510131
, , , :
Chapter two-neuromechanics: From neurons to brain
In: Advances in Applied Mechanics 48 (2015), S. 79--139
ISSN: 0065-2156
DOI: 10.1016/bs.aams.2015.10.002
, , :
2014
A mechanical model predicts morphological abnormalities in the developing human brain
In: Scientific Reports 4 (2014)
ISSN: 2045-2322
DOI: 10.1038/srep05644
, , :
A mechanical approach to explain cortical folding phenomena in healthy and diseased brains
GAMM 2014 (Erlangen, Germany, 10. März 2014 - 14. März 2014)
In: PAMM, Erlangen, Germany: 2014
DOI: 10.1002/pamm.201410038
, , :
The role of mechanics during brain development
In: Journal of the Mechanics and Physics of Solids 72 (2014), S. 75-92
ISSN: 0022-5096
DOI: 10.1016/j.jmps.2014.07.010
, , :
Lehre
Biomechanik
Seit 2018
Linear Continuum Mechanics
Wintersemester 2019/2020
Introduction to Neuromechanics
Sommersemester 2016 und 2019