Axiomata sim Jeass Motûs

Seminar über Fragen der Mechanik

zu folgendem Vortrag wird herzlich eingeladen

Mittwoch, 25.05.2022, 10:30 Uhr, Immerwahrstr. 1, Raum 01.025

https://fau.zoom.us/j/97303812645

A nonsmooth geometric approach for system-level modelling of braiding process

Indrajeet Patil

Multibody & Mechatronic Systems Laboratory, University of Liège, Belgium

The production of braided preforms by simultaneous deposition of warp and weft (optionally stem) textile yarns on a mandrel constitutes the initial stages of composite manufacturing. Commonly known as circular overbraiding, the system-level modelling of such processes ideally involves the development of a consistent framework to model the bobbin carrier kinematics, highly slender yarns as deformable beams and frictional contact interactions with the mandrel together in a unified, robust and efficient setting.

In this project, a differential geometric approach is proposed to model the different components of the machine. More precisely, the absolute motion of each component is mathematically represented using homogeneous transformation matrices defined on the Lie group SE(3). The joints which connect the different components are then modelled as bilateral constraints so that the equations of motion take the form of a differential-algebraic equation (DAE) on a Lie group.

This talk addresses in particular the modelling of the transfers of a bobbin carrier to subsequent horn gears as a bilateral constraint with switching conditions. The deformable beam is then connected to the carrier to study its response with nonsmooth boundary conditions arising from the transfers. We will further investigate the behaviour of a nonsmooth time integration scheme in this setting.

quantum promovel proj a corput alind improgent . intaveril, idem guage trup homeon in partem contras spionis mutua) publicit. Air

Prof. Dr.-Ing. P. Steinmann Prof. Dr.-Ing. K. Willner

Prof. Dr.-Ing. S. Leyendecker

Lehrstuhl für Technische Mechanik Egerlandstraße 5, 91058 Erlangen

Lehrstuhl für Technische Dynamik Immerwahrstraße 1, 91058 Erlangen